Département de la Haute-Garonne (31)

Agence de l'Eau ADOUR-GARONNE

CONSULTATION N°2011-035

ETUDE RELATIVE A LA SUBSTITUTION DU CALCAIRE MARIN SUR LES STATIONS D'EAU POTABLE EQUIPEES DE FILTRES DE REMINERALISATION

PHASE 3

A: TOULOUSE Le : 13 février 2012

<u>Siège Social</u> 11 bis, rue Gabriel Péri – CS 90201 54519 Vandoeuvre-lès-Nancy cedex

> <u>Délégation Régionale</u> 8, rue Olivier de Serres 49 070 BEAUCOUZÉ

2: 02.41.73.21.11 – Fax: 02.41.73.38.58

Agence Sud-Ouest 197, avenue de Fronton 31200 Toulouse

FICHE SIGNALETIQUE

CLIENT

 \Rightarrow Raison sociale Agence de l'Eau Adour- Garonne Coordonnées \Rightarrow 90 rue du Férétra 31400 TOULOUSE Cedex 4 Téléphone \Rightarrow 05 61 36 36 49 Télécopie \Rightarrow 05 61 36 37 28 Mail \Rightarrow agnes.chevrel@eau-adour-garonne.fr

SITE D'INTERVENTION

■ Coordonnées

Bassin Adour-Garonne

DOCUMENT

Nature du document \Rightarrow Rapport \Rightarrow RWEH12 Nomenclature du document \Rightarrow \Rightarrow Nombre d'exemplaires remis 1 Pièces jointes \Rightarrow Destinataires \Rightarrow Agnès CHEVREL Numéro de projet \Rightarrow DWEH11CBU180 Date de remise du document \Rightarrow 10/09/2012 Pauline GIUPPONI Nom du chargé d'études \Rightarrow

CONTROLE QUALITE

	Nom	Fonction	Date	Signature
Vérifié	Thierry PICHARD	Chef de projet	10/09/2012	po
Validé	Caroline BELAUBRE	Responsable d'agence	10/09/2012	

SOMMAIRE

I - PREAMBULE	5
II - PARTIE 1 : TRAVAUX DE SUBSTITUTION	6
II.1. INTRODUCTION	6
II.2. DEFINITION DES BESOINS	
II.2.1. Méthodologie	
II.2.2. Résultats	
II.3. EXTRACTION DE LA NEUTRALITE DES FILTRES	7
II.4. MISE EN PLACE DU NOUVEAU MATERIAU	
II.5. Remise en service	
II.5.1. Lavage	9
II.5.2. Désinfection	
II.5.3. Rodage	
II.6. RECAPITULATIF PHOTO	12
III - PARTIE 2 : SUIVI QUALITE	14
III.1. METHODOLOGIE	
III.2. RESULTATS « USINES RECONVERTIES »	
III.2.1. Rosiers d'Egletons	
III.2.2. Saint-Sylvain	
III.2.3. Meilhards	
III.2.4. Ladignac le long	31
III.2.5. Saint Mamet la Salvetat	
III.3. RESULTATS « USINES SUIVIES »	
III.3.1. Saint Pardoux l'Ortigier III.3.2. Lavert	
III.3.3. Sainte Féréole	
III.3.4. Sainte FereoieIII.3.4. Sainte Fortunade	
"" III.3.5. Saint Fréjoux	
III.4. Synthese	
IV - CONCLUSION	61
V - PARTIE 3 : PRECONISATIONS DE CONCEPTION ET D'EXPLOITATION	62
VI - ANNEXES :	64
ANNEXE I :	65
FICHES DE PRELEVEMENT	
ANNEXE II:	
RESULTATS D'ANALYSES BRUTS	
ANNEXE III:	
CALCUL D'EQUILIBRE CALCO-CARBONIQUE	
ANNEXE IV:	
CALCUL DES CONSOMMATIONS DE REACTIF	
ANNEXE V:	
CUMPTES RENDUS DES INTERVENTIONS DE RECONVERSION DES SITES	9

INDEX DES FIGURES

Figure 1: Echantillons des matériaux sélectionnés pour l'étude	5
Figure 2: Engins utilisés pour l'extraction de la neutralite	7
Figure 3: Remplissage des filtres	<u>9</u>
Figure 4 : Aspect de l'eau lors du premier lavage	10
Figure 5: Les étapes de reconversion d'un filtre de neutralisation	13
Figure 6: Neutralite en fond de filtre - Rosiers d'Egletons	18
Figure 7: Schéma de l'UDI de Meilhards	28
Figure 8: Points de prélèvement eau traitée de Saint Mamet	37
Figure 11: "Creux" dans le calcaire de Ste Féréole	51

INDEX DES TABLEAUX

Tableau 1: Récapitulatif des sites et produits sélectionnées	5
Tableau 2: Volume de matériaux filtrants retenus par usine et par filtre	
Tableau 3: Volume de matériaux mis en place	8
Tableau 4 : Définition de l'équilibre calco-carbonique (circulaire NDGS/SD7A n°2007-39 du	23
janvier 2007)	15
Tableau 5: Tableau de synthèse des résultats	60

LISTE DES ABREVIATIONS, UNITES ET SIGLES

AEAG: Agence de l'Eau Adour-Garonne **AEP**: Alimentation en Eau Potable

ARS: Agence Régionale de Santé (ex DDASS et DRASS)

UDI: Unité de distribution

EB: Eau brute **ET**: Eau traitée

CM: Calcaire Marin (Neutralite)

CT: Calcaire Terrestre **pH**: potentiel Hydrogène

TAC: Titre Alcalimétrique Complet

TH: Titre Hydrotimétrique ou dureté totale

TH_{Ca}: Titre Hydrotimétrique Calcique ou dureté calcique

TH_{Mg}: Titre Hydrotimétrique Magnésien ou dureté magnésienne

μS/cm: micro-siemens par centimètre

F: Degré Français

I - PREAMBULE

A l'issue de la phase 2 de l'étude de substitution du calcaire marin (neutralite) sur les stations d'eau potable équipées de filtres de reminéralisation:

- 10 unités de production d'eau potable ont été sélectionnées : 5 pour des essais de substitution du calcaire marin et 5 déjà équipées en calcaire terrestre pour suivi.
- 4 produits de neutralisation ont été sélectionnés.

Figure 1: Echantillons des matériaux sélectionnés pour l'étude

Le tableau suivant récapitule la sélection faite :

Station / Commune	Maitre d'ouvrage	Matériau de substitution					
tations sélectionnées pour une reconversion							
Croix du bourg Rosiers d'Egletons (19)	Syndicat des eaux de Montaignac - Rosiers d'Egletons	FILTRACARB L-SB					
Bousseyroux Saint Sylvain (19)	Syndicat des eaux des 2 vallées	Akdolit hydro calcit CG					
Le Bourg Meilhards (19)	Commune de Meilhards	Algafiltre Ca					
Lascombes Saint Mamet la Salvetat (15)	Commune de Saint Mamet la Salvetat	Akdolit Karbonat C					
Les roches blanches Ladignac le Long (87)	Commune de Ladignac le Long	FILTRACARB L-SB					
Stations sélectionnées pour suiv	i						
Lavert (19)	Syndicat des eaux du Maumont	FILTRACARB SB					
Sainte Féréole (19)	Syndicat des eaux du Maumont	FILTRACARB SB					
Sainte Fortunade (19)	Commune de Sainte Fortunade	FILTRACARB L-SB					
Saint Férjoux (19)	Commune de Saint Fréjoux	FILTRACARB L-SB					
Croix de Fer, Saint Pardoux l'Ortigier (87)	Syndicat des eaux de Perpezac le Noir	FILTRACARB L-SB					

Tableau 1: Récapitulatif des sites et produits sélectionnées

Le présent rapport a pour objectif de détailler les aménagements faits sur les stations pour la substitution de la neutralite et de présenter les résultats du suivi qualité qui s'est déroulé de la mi-mai à la mi-août 2012 sur l'ensemble des 10 stations de l'étude.

Dans la suite du rapport, les usines seront identifiées par le nom de la commune sur laquelle elles se situent.

II - PARTIE 1: TRAVAUX DE SUBSTITUTION

II.1. Introduction

Cette partie a pour objectifs de présenter les interventions réalisées pour la substitution du maërl sur les cinq usines sélectionnées pour les essais de reconversion.

Ces travaux se sont déroulés en plusieurs étapes :

- Définition des besoins et calcul des volumes de calcaire terrestre nécessaire,
- Extraction du calcaire marin des filtres,
- Mise en place du nouveau matériau filtrant,
- Remise en service des usines.

Sur les unités possédant deux filtres, un seul a été vidangé et rempli avec le nouveau produit à tester. Le deuxième filtre contenant le maërl (neutralite) est conservé en référence.

Les comptes rendus des interventions sur site sont données en annexe.

II.2. DEFINITION DES BESOINS

II.2.1. Méthodologie

A partir des données de qualité des eaux brutes et des préconisations des fournisseurs de calcaire, les besoins volumiques en matériau filtrant ont été définis.

Ces calculs prennent également en compte une consommation de matériau pendant 30 jours avant recharge. Il est en effet important de préciser que le temps de contact minimal doit être déterminé pour le moment où une recharge est nécessaire. Contrairement aux autres réactifs, le réacteur sert également de stockage du réactif et il ne faut pas attendre que le réacteur soit vide pour procéder à son rechargement. Le volume de matériau à mettre en œuvre correspond donc à la somme du volume de matériau nécessaire pour avoir un temps de contact suffisant et du volume de matériau consommé pendant l'intervalle de temps défini entre deux rechargements.

Sur les unités possédant deux filtres, afin d'avoir un fonctionnement comparable dans les deux bacs, le volume de calcaire terrestre a été ajusté pour être proche de celui de neutralite. Le but était d'assurer des conditions de filtration similaires pour obtenir des résultats comparables.

Outre les temps de contacts préconisés par les constructeurs et utilisés pour dimensionner les filtres, il est également important d'assurer une couche de filtration assez épaisse pour optimiser la neutralisation et réduire les dysfonctionnements hydrauliques, notamment la création de passages préférentiels. Certains volumes ont donc été ajustés en conséquence.

II.2.2. Résultats

En tenant compte de ces différents paramètres, les volumes de matériaux filtrants retenus pour l'étude sont présentés dans le tableau suivant :

	Calcaire	e terrestre / c	Neutralite	
Usine	Quantité calculée	Quantité retenue	Volume correspondant	Volume nominal
Croix du bourg - Rosiers d'Egletons (19)	12 t	12 t	9,2 m ³	12,6 m ³
Bousseyroux - Saint Sylvain (19)	1,95 t	6,5 t	5 m ³	6 m ³
Le Bourg - Meilhards (19)	2,4 t	6 t	4,6 m ³	6,4 m ³
Lascombes - Saint Mamet la Salvetat (15)	21,6 t	20 t	13,3 m ³	16 m ³
Les roches blanches - Ladignac le Long (87)	18 t	18 t	13,8 m ³	20 m ³

Tableau 2: Volume de matériaux filtrants retenus par usine et par filtre

Les volumes de matériaux retenus pour Saint Sylvain et Meilhards sont volontairement supérieurs à ceux calculés, pour garantir une hydraulique de filtration homogène.

On remarque que le volume de calcaire terrestre théorique nécessaire est, pour la totalité des 5 usines, inférieur au volume des réacteurs des usines fonctionnant avec de la neutralite. Cela s'explique par le fait qu'à tonnage de calcaire égal, le volume de calcaire terrestre est plus faible en raison d'une densité plus élevée.

Les usines sélectionnées étant largement dimensionnées pour un traitement sur calcaire marin, aucune augmentation du volume des réacteurs ne sera nécessaire pour accueillir les nouveaux matériaux de filtration. Par contre des aménagements seront certainement à prévoir quant aux conditions de lavage du calcaire terrestre.

II.3. EXTRACTION DE LA NEUTRALITE DES FILTRES

La neutralite a été évacuée des filtres par aspiration.

Deux engins différents ont été utilisés :

- Sur les usines de Rosiers d'Egletons, Meilhards et Ladignac le Long : aspiratrice-excavatrice (habituellement utilisée en travaux public pour excaver des terres)
- Sur l'usine de Saint Mamet : hydrocureuse (habituellement utilisée en assainissement pour curer les réseaux et ouvrages de stockage)

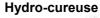


Figure 2: Engins utilisés pour l'extraction de la neutralite

Bien que théoriquement réutilisable pour le traitement d'eau potable, il a été décidé que la neutralite évacuée ne serait pas remise en place. En effet, lors de son extraction des filtres, la neu-

tralite a été contaminée par les résidus de terres et d'eaux usées présents dans les compartiments des engins.

En accord avec les exploitants, les volumes évacués ont été, soit mis en décharge, soit conservés pour une réutilisation en remblais.

L'usine de Saint Sylvain avait préalablement été vidée de sa neutralite par l'exploitant en décembre 2011 pour la réalisation de travaux de génie civil.

II.4. MISE EN PLACE DU NOUVEAU MATERIAU

La livraison de matériau s'est faite selon le cas en vrac ou big-bag. Il s'est avéré lors de la mise en œuvre du nouveau matériau que les usines n'avaient pas été conçues pour permettre le rechargement dans des conditions satisfaisantes, notamment pour éviter les envolées de poussière, principalement pour les installations fonctionnant en filtres ouverts.

Comme la neutralite, les matériaux calcaires secs contiennent beaucoup de fines qui sont libérées sous forme de poussière lors du remplissage. La mise en œuvre d'un dispositif de mouillage du matériau lors de la recharge des filtres s'avère être indispensable pour toutes les usines.

Les quantités mises en place dans les filtres lors de la première recharge sont détaillées dans le tableau suivant :

Usine	Quantité retenue	Quantité mise en place	Densité apparente	Volume correspon- dant	Hauteur de filtration
Croix du bourg Rosiers d'Egletons (19)	12 t	13,2 t	1,3	10,2 m ³	1,21 m
Bousseyroux Saint Sylvain (19)	6,5 t	6,5 t	1,25 à 1,3	5 m ³	1,25 m
Le Bourg Meilhards (19)	6 t	6 t	1,25 à 1,3	4,6 m ³	1,15 m
Lascombes Saint Mamet la Salvetat (15)	20 t	~19 t	1,5	~12,7 m ³	-
Les roches blanches Ladignac le Long (87)	18 t	18 t	1,3	13,8 m ³	1,13 m

Tableau 3: Volume de matériaux mis en place

Les photos suivantes montrent les différents remplissages des filtres :

Remplissage par big-bag

Remplissage par vrac

Figure 3: Remplissage des filtres

II.5. REMISE EN SERVICE

II.5.1. Lavage

Une fois le nouveau matériau mis en place, un lavage efficace des filtres a été réalisé pour nettoyer les grains de calcaire et évacuer les fines.

Lors de la première remise en eau, on observe un aspect très laiteux de l'eau dans les filtres, quelque soit le produit utilisé.

Un lavage jusqu'à obtention d'une eau claire est nécessaire.

Figure 4 : Aspect de l'eau lors du premier lavage

Selon les équipements des filtres (plancher, soufflante d'air) le nettoyage a nécessité plus ou moins de cycle de lavage/rinçage :

- pour des filtres avec plancher soufflant, deux à trois lavages suffisent pour obtenir une eau claire.
- pour des filtres sans plancher, le nettoyage par vidange et/ou surverse peut prendre plusieurs jours (> 5 cycles de lavages).

Les réserves d'eau disponibles pour les lavages peuvent également être limitantes.

A noter que le milieu récepteur des eaux de lavage (lagune, cours d'eau) risque d'être impacté par le nettoyage des filtres.

Ces paramètres sont à prendre en compte pour tout changement / renouvellement de produit filtrant.

II.5.2. <u>Désinfection</u>

Avant remise en service des filtres, une désinfection du calcaire à l'eau de javel a été faite, conformément aux préconisations de l'ARS 19 :

- niveau d'eau à une dizaine de centimètres au dessus du matériau filtrant,
- ajout de 2 à 4 litres d'eau de javel à 36° par volu me d'eau (en m³),
- trempage durant 24 à 48h,
- rinçage abondant du filtre,
- contrôle du pH, remise en distribution.

II.5.3. Rodage

Certains produits peuvent demander une période de rodage avant une mise en service optimale. C'est le cas de *l'Akdolit Hydro-Calcit* testé sur la commune de Saint Sylvain.

Lors de la remise en eau du filtre, le pH mesuré était supérieur à 9. Le fournisseur de ce calcaire préconise généralement un « rodage » de 2 à 4 semaines pour stabiliser le pH avant remise en route.

Le protocole de rodage pour Saint Sylvain a été le suivant :

SEMAINE 1	 mise en place des 5m³ de calcaire en une fois, lavage efficace à l'eau et à l'air, désinfection et mise en eau, mise en vidange pendant une semaine : l'arrivée d'eau est laissée en partie ouverte mais la sortie du filtre fermée, le filtre est alimenté par le sur plus de production des sources,
SEMAINE 2	 lavage efficace à l'eau et à l'air, contrôle du pH en sortie de filtre, remise progressive en distribution (filtration de 80% du débit sur le filtre à neutralite et 20% sur l'akdolit) pendant environ une semaine, contrôle du pH en sortie de filtre, remise en service totale.

A l'issue de deux semaines, les résultats en sortie du filtre à Akolit Hydro-Calcit étaient conformes aux références de qualité des eaux destinées à la distribution.

II.6. RECAPITULATIF PHOTO

1- Filtre en début d'étude (filtre à neutralite)

2- Evacuation de la neutralite par aspiration

3- Mise en place du nouveau produit de filtration

4- Remise en eau

Figure 5: Les étapes de reconversion d'un filtre de neutralisation

III - PARTIE 2 : SUIVI QUALITE

III.1. METHODOLOGIE

Deux types d'unités de production étaient concernés par le suivi qualité des eaux :

- des usines reconverties spécifiquement pour l'étude (présentées dans les paragraphes précédents);
- des usines utilisant déjà du calcaire terrestre pour la neutralisation de leur eau, soit après reconversion par les maitres d'ouvrage, soit prévues dès leur construction pour du calcaire terrestre.

Pendant 13 semaines, un prélèvement hebdomadaire a été réalisé sur chaque station, en entrée et en sortie de filtre.

Les essais se sont déroulés de mai à aout 2012. Pour chaque point de prélèvement, les paramètres suivants ont été analysés :

\rightarrow Toutes les semaines :

- pH
- Conductivité
- Dureté/Titre hydrotimétrique (TH)
- Titre Alcalimétrique Complet (TAC)
- Température

\rightarrow Tous les quinze jours :

- pH
- Conductivité
- TH
- TAC
- Température
- Calcium (Ca)
- Magnésium (Mg)
- Sodium (Na)
- Nitrate (NO₃)
- Potassium (K)
- Sulfate (SO₄)
- Chlorure (CI)

La mesure de ces paramètres permet ensuite, grâce au logiciel d'équilibre calco-carbonique LPLWin, de calculer le pH d'équilibre de l'eau, les concentrations en CO₂ (équilibrant, excédentaire et agressif) ainsi que les indices relatifs à l'agressivité, l'indice de saturation et de Langelier, et à la corrosivité, indice de Larson et de Leroy.

Le caractère agressif, à l'équilibre ou entartrant d'une eau est déterminé à partir de la différence entre le pH d'équilibre de l'eau et son pH mesuré in situ. La circulaire NDGS/SD7A n°2007-39 du 23 janvier 2007 définit les différentes classes d'eau suivant cette différence de pH.

Classes de l'eau pour la définition de l'équilibre calco-carbonique							
1ère classe	eau à l'équilibre calco-carbonique	-0,2 ≤ pHeq - pH ≤ 0,2					
2ème classe	eau légèrement agressive	0,2 < pHeq - pH ≤ 0,3					
3ème classe	eau agressive	0,3 < pHeq - pH					
4ème classe	eau légèrement incrustante	-0,3 ≤ pHeq - pH < -0,2					
5ème classe	eau incrustante	pHeq - pH < -0,3					

Tableau 4 : Définition de l'équilibre calco-carbonique (circulaire NDGS/SD7A n°2007-39 du 23 janvier 2007)

Les paragraphes suivants décrivent pour chaque site:

- > les conditions d'expérimentation,
- > la date et durée des tests,
- > la localisation des points de prélèvement,
- > les résultats analytiques avant et après filtration.

III.2. RESULTATS « USINES RECONVERTIES »

III.2.1. Rosiers d'Egletons

⇒ Données techniques

« Croix du bourg » ; Rosiers d'Egletons
Syndicat des Eaux de Montaignac - Rosiers d'Egletons
Deux captages (arrivées gravitaires)
Injection de CO ₂ + neutralisation + chloration
Un filtre ouvert sans plancher
L=3m / I=2,80m / H=3,3m / S=8,4m ²
17/04/2012
du 10/05/2012 au 02/8/2012
Filtracarb L-SB 1.5/2.5

⇒ Résultats avant reconversion

Le tableau suivant présente un résultat d'analyse type avant substitution de la neutralite :

Eau	Date analyse	Cond. 25℃ (μS/cm)	рН	TH (°F)	TAC (℉)	CO ₂ (mg/L)	Ca (mg/L)	Mg (mg/L)	HCO ₃ (mg/L)
Eau brute	28/09/2010	38.1	7.3	<1	<2	19.1	2.1	<0.5	<25
Eau traitée	08/09/2011	136.1	8.24	6.1	6.1	0.789	19	2.1	72.191

Produit(s) testé(s):

Matériau	Granulométrie	Volume initial	Hauteur initiale
Filtracarb L-SB	1,5 à 2,5 mm	10,2 m ³	1,21 m

Volume total filtré (13semaines)	Débit moyen* journalier (moyenne 13sem)	Débit moyen* journalier min	Débit moyen* journalier max	Temps de marche par jour	Temps de contact estimé
20 282 m ³	242 m³/j	217 m ³ /j	254 m³/j	20 h	50 min

^{*} débit en entrée d'usine sur arrivée des captages

Déroulement du test :

Le tableau suivant récapitule les évènements et interventions intervenus sur le filtre ou l'usine pendant la durée du suivi (pour plus de détail se référer à la fiche de prélèvement en annexe) :

Recharge :	Aucune recharge n'a été faite durant la période du suivi.
Lavage :	Un lavage du filtre à l'eau (détassage à contre courant puis vidange) a été fait environ tous les deux/trois jours.
Phasage :	Le suivi s'est déroulé en deux phases : PHASE 1 (du 10/05 au 01/07): pas d'injection de CO ₂ PHASE 2 (du 02/07 au 02/08) : injection de CO ₂ à 1kg/h à 2bar
Evènement particulier significatif :	La dernière semaine de mesure (semaine 27), l'injection de CO ₂ s'est arrêtée (bouteilles vides). Les bouteilles de CO ₂ étaient neuves au démarrage de l'étude. La date exacte de l'arrêt de l'injection n'est pas connue, mais lors du prélèvement du 02/08, l'injection de CO ₂ était à l'arrêt.

Points de prélèvement :

Eau brute : Robinet de vidange au pied de la colonne de dégazage

Eau traitée : Robinet laboratoire (piquage sur la conduite sortie réservoir sur mise en distribution)

⇒ Résultats

Exploitation

Aucun ajustement dans l'exploitation de la station n'a été effectué après le changement de matériau.

Comme c'était déjà le cas avant l'étude, l'exploitant souligne une difficulté pour réguler l'injection de CO₂. Cette injection est actuellement asservie au pH, or il serait préférable qu'elle soit asservie à la conductivité. La mise en place d'un conductimètre sur l'eau traitée permettrait une meilleure régulation de l'injection de CO₂.

L'étude a montré que l'usine de Rosiers d'Egletons a une autonomie de stockage de CO₂ d'environ 4 semaines.

<u>Lavage</u>: Le lavage par vidange (sans injection d'air) ne permet pas d'effectuer un lavage satisfaisant du filtre. Lors de l'extraction de la neutralite, une épaisseur de boues noires s'est révélée en fond de filtre, au niveau de l'arrivée d'eau.

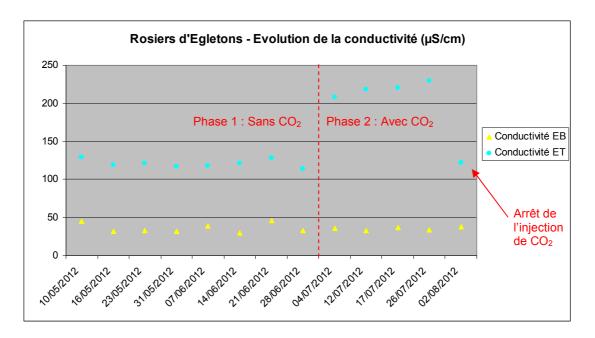
Malgré des lavages quasi journaliers, ce phénomène d'encrassement, propre des filtres alimentés par le bas, se reproduira avec le nouveau matériau.

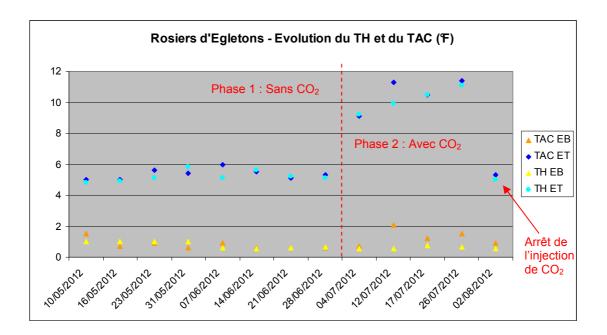
Figure 6: Neutralite en fond de filtre - Rosiers d'Egletons

Qualité

Le tableau ci-dessous récapitule les résultats d'analyse du suivi qualité :

ROSIERS D'EGLETONS		Eau brute		Eau traitée PHASE1 : sans CO₂			Eau traitée PHASE2 : avec CO ₂			
Paramètres	Unité	min	moy	max	min	moy	max	min	moy	max
рН	unités pH	6.1	6.4	6.9	6.7	7.8	8.2	7.8	7.8	7.9
Titre hydrotimétrique ou dureté totale	F	0.6	0.7	1.0	4.8	5.2	5.8	9.2	10.2	11.1
Alcalinité totale (TAC)	F	0.6	1.0	2.1	5.0	5.4	6.0	9.1	10.6	11.4
Conductivité corrigée à 25℃	μS/cm	30	36	46	114	121	129	208	219	230
Chlorures	mg Cl/l	2.3	2.7	3.3	2.7	3.0	3.1	3.0	3.1	3.1
Potassium	mg K/l	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Sodium	mg Na/l	3.6	3.8	4.0	3.5	4.0	4.4	3.9	4.1	4.4
Sulfates	mg SO4/I	0.7	0.9	1.6	0.7	0.8	0.9	0.7	0.8	0.8
Nitrates	mg NO3/I	3.2	3.7	4.0	3.4	3.7	4.0	3.8	3.9	4.0
Calcium (calcul TH)	mg Ca/l	1.4	1.7	2.2	18.0	19.8	22.0	35.0	39.0	43.0
Magnésium (calcul TH)	mg Mg/l	0.5	0.5	0.5	0.5	0.6	0.7	0.9	1.0	1.1

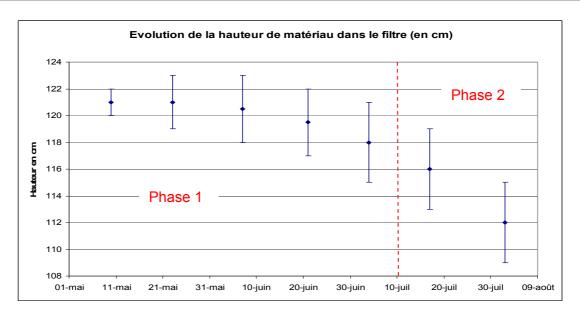

Equilibre calco-carbonique : Le pH et la température sur site ont été mesurés à chaque prélèvement. Le tableau suivant présente les résultats du calcul de l'équilibre calco-carbonique, basé sur les mesures de terrain et sur les résultats d'analyses laboratoire.


ROSIERS D'EGLETONS	Eau brute			Eau traitée PHASE1 : sans CO₂			Eau traitée PHASE2 : avec CO₂			
Paramètres	min	min moy max		min	moy	max	min	moy	max	
pH terrain (1)	5.8	6.06	6.3	7.00	7.35	7.80	7	7.3	7.6	
pH équilibre (2)	7.93	8.82	9.35	8.68	8.75	8.85	8.10	8.35	8.72	
ΔpH (2)-(1)	2.13	2.77	9.35	0.94	1.41	1.85	0.63	0.9	1.1	
Caractère	Agressif	Agressif	Agressif	Agressif	Agressif	Agressif	Agressif	Agressif	Agressif	
CO ₂ agressif (mg/l)	11.5	19.31	53.9	1.67	6.47	10.78	3.7	11.6	19.4	

Commentaires:

- Les eaux brutes sont très peu minéralisées et agressives.
- Les eaux en sortie de traitement conservent leur caractère **agressif**. L'équilibre calco-carbonique n'est pas atteint malgré un temps de contact moyen de 50 minutes.
- L'injection de CO₂ ne permet pas d'atteindre l'équilibre calco-carbonique, mais son impact positif sur la conductivité et, les TH et TAC de l'eau traitée est manifeste. Sans injection de CO₂, les paramètres physico-chimiques en sortie de traitement ne sont pas satisfaisants vis-à-vis des valeurs de référence qualité (conductivité >200 μS/cm), le TH et TAC étant par ailleurs largement inférieurs à 8F) alors qu'avec l'injection de CO₂, ces paramètres sont satisfaisants.
- L'indice de Larson et l'indice de Leroy calculés pour les eaux traitées montrent que celles-ci sont non corrosives.
- Les résultats en phase 1 sont légèrement inférieurs à ceux obtenus avec la neutralite, les résultats en phase 2 sont au contraire supérieurs.

Les deux graphiques suivants présentent l'impact de l'injection de CO₂ sur la conductivité, le TH et le TAC.



<u>Consommation de réactif</u>: Les tableaux ci-dessous présentent l'évolution de la hauteur moyenne de calcaire dans le filtre au cours de l'étude, et la consommation moyenne de calcaire estimée (résultats moyens mesurés et/ou calculés).

Hauteur initiale	Hauteur finale	Delta hauteur	Temps de contact initial	Temps de contact final
m	m	m	min	min
1.21	1.12	0.09	50	47

ROSIERS D'EGLETONS	Consommation de calcaire en g par m³ d'eau filtrée	Consommation de calcaire en g par g de CO ₂ neutralisé
Phase 1 (sans CO ₂)	15.9	1.5
Phase 2 (avec CO ₂)	96.6	1.8

Commentaires:

- En 13 semaines de suivi (84 jours), le niveau dans le filtre a baissé d'environ 9 cm (1,5 cm en phase 1 et 7,5 cm en phase 2).
- Le niveau de calcaire n'est pas resté homogène : la différence de hauteur au niveau de la goulotte de sortie d'eau traitée et celle à l'opposé du filtre n'a eu de cesse de se creuser au fil de l'étude.
- L'injection de CO₂ a un impact important sur la consommation de calcaire. En effet, cette injection entraine une augmentation du CO₂ agressif présent dans l'eau et donc une augmentation de la quantité de CO₂ à neutraliser lors de la filtration sur le calcaire.

⇔ Conclusion

L'injection de CO₂ est nécessaire pour reminéraliser l'eau des Rosiers d'Egletons. Cependant, bien que l'équilibre calco-carbonique ne soit pas atteint, l'eau n'est plus corrosive et respecte la valeur de référence qualité pour la conductivité, du TH et du TAC.

Pour satisfaire aux exigences réglementaires, dans ce cas-ci, l'eau ne doit plus être agressive à l'issue du traitement, une injection de soude est nécessaire pour atteindre l'équilibre calco-carbonique.

III.2.2. Saint-Sylvain

⇒ Données techniques

Identifiant usine :	« Bousseyroux/Saint Bonnet Elvert » ; Saint Sylvain					
Maître d'ouvrage :	Syndicat des eaux des 2 vallées					
Origine eau(x) brute(s) :	Deux captages (arrivées gravitaires) Un forage (ponctuel) (débit de pompage 7m³/h)					
Filière de traitement :	Neutralisation + chloration					
Nombre et type de filtre :	Deux filtres ouverts avec plancher					
Dimension filtre(s) :	L=2m / I=2m / H=2.7 / S=4m (x2)					
Date de reconversion :	23/05/2012					
Date de déroulement des essais :	du 31/05/2012 au 23/08/2012					
Produit suivi :	Akdolit Hydro Calcit C G					

⇒ Résultats avant reconversion

Le tableau suivant présente un résultat d'analyse type avant substitution de la neutralite :

Eau	Date analyse	Cond. 25℃ (μS/cm)	рН	TH (°F)	TAC (℉)	CO ₂ (mg/L)	Ca (mg/L)	Mg (mg/L)	HCO₃ (mg/L)
Eau brute	06/01/2012	49.2	6.45	1.1	<2	61.85	1.75	0.86	0
Eau traitée	06/04/2011	195	8.15	9.5	9.3	0	29	3.5	109.8

⇒ Conditions de test

Produit(s) testé(s):

Un seul des deux filtres a été reconverti. Le deuxième filtre à neutralite a été conservé comme référence.

Matériau	Granulométrie	Volume initial	Hauteur initiale
NeutralG	2 à 4 mm	6,4 m ³	1,6 m
Akdolit Hydro Calcit C G	0,5 à 3,15 mm	5 m³	1,25 m

Volume tota filtré (13semaine	journalier (movenne	Débit moyen * journalier min	Débit moyen* journalier max	Temps de marche par jour	Temps de contact es-timé
7 997 m ³	136 m³/j	118 m³/j	156 m³/j	20 h	Neutralite : 114 min Akdolit :89 min

^{*} débit en entrée de station sur arrivée d'eau brute dans les filtres

Déroulement du test:

Le tableau suivant récapitule les évènements et interventions intervenus sur le filtre ou l'usine pendant la durée du suivi (pour plus de détail se référer à la fiche de prélèvement en annexe) :

Recharge :	Aucune recharge n'a été faite durant la période du suivi.
Lavage :	Un lavage du filtre (air+eau) a été fait hebdomadairement (tous les lundis).
Phasage :	Aucune modification de process, de volume de filtration ou de méthodologie de prélèvement n'a été faite pendant la durée du suivi.
Evènement particulier significatif :	Aucun évènement significatif durant la période de suivi.

Points de prélèvement :

Eau brute : Piquage sur conduite d'arrivée d'eau brute **Eau traitée :** Vidanges respectives de chaque filtre

⇒ Résultats

Exploitation

Lors de la mise en service du filtre à Akdolit Hyro-Calcit, plusieurs lavages et un rodage de deux semaines ont été nécessaires afin de réguler le pH en sortie de filtre à une valeur inférieure à 9. (voir partie 1 paragraphe II.5.3)

Aucun ajustement dans l'exploitation de la station n'a été effectué après le changement de matériau.

<u>Lavage</u>: Le lavage du filtre à Akdolit Hydro-Calcit apparaît plus difficile que celui à Neutralite. Plusieurs raisons l'expliquent :

- L'Akdolit Hydro-Calcit a une densité supérieure à la Neutralite.
- Le volume d'Akdolit est plus faible que le volume de Neutralite : par conséquence, la hauteur d'eau au dessus du calcaire terrestre est plus importante. Ce volume d'eau important est difficile à « laver ».

Qualité

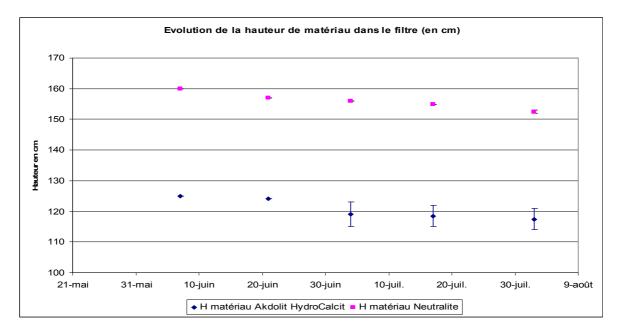
Le tableau ci-dessous récapitule les résultats d'analyse du suivi qualité :

		E	Eau brute			Eau traitée Akdolit Hydro Calcit			Eau traitée Neutralite		
Paramètres	Unité	min	moy	max	min	moy	max	min	moy	max	
pH	unités pH	6.4	6.5	6.7	7.9	8.1	8.3	8.1	8.2	8.3	
Titre hydrotimétrique ou dureté totale	F	0.7	0.8	0.9	7.6	8.2	8.7	8.2	9.2	9.9	
Alcalinité totale (TAC)	F	1.0	1.4	2.6	7.6	8.6	9.7	9.2	9.7	10.8	
Conductivité corrigée à 25℃	μS/cm	32	46	79	164	179	185	174	201	230	
Chlorures	mg Cl/l	3.3	3.4	3.7	3.3	3.4	3.4	3.3	3.5	3.8	
Potassium	mg K/l	0.7	0.9	1.3	0.6	0.7	8.0	0.7	8.0	1.1	
Sodium	mg Na/l	4.0	4.5	4.8	4.2	4.4	4.6	4.4	4.5	4.6	
Sulfates	mg SO4/I	0.6	0.7	0.8	0.7	0.8	8.0	1.1	1.2	1.3	
Nitrates	mg NO3/I	2.1	3.1	3.4	2.6	2.8	3.1	2.6	2.8	3.2	
Calcium (calcul TH)	mg Ca/l	1.5	2.0	2.3	27.0	30.8	33.0	28.0	31.2	33.0	
Magnésium (calcul TH)	mg Mg/l	0.6	0.8	0.9	0.9	1.2	2.3	3.0	3.4	3.8	

<u>Equilibre calco-carbonique</u>: Le pH et la température sur site ont été mesurés à chaque prélèvement. Le tableau suivant présente les résultats du calcul de l'équilibre calco-carbonique, basé sur les mesures de terrain et sur les résultats d'analyses laboratoire.

ROSIERS D'EGLETONS	Eau brute			Eau traitée Akdolit Hydro Calcit			Eau traitée Neutralite		
Paramètres	min	moy	max	min	moy	max	min	moy	max
pH terrain (1)	6.45	6.58	6.80	7.60	7.77	7.90	7.20	7.59	7.90
pH équilibre (2)	9.02	9.25	9.55	8.27	8.35	8.42	8.23	8.25	8.30
ΔpH (2)-(1)	2.57	2.67	2.75	0.37	0.58	0.82	0.36	0.66	1.10
Caractère	Agressif	Agressif	Agressif	Agressif	Agressif	Agressif	Agressif	Agressif	Agressif
CO ₂ agressif (mg/l)	3.34	7.04	10.03	1.32	2.42	4.18	1.45	5.62	11.44

Commentaires:


- Les eaux brutes sont peu minéralisées et agressives.
- Les eaux en sortie de traitement conservent leur caractère **agressif**. L'équilibre calco-carbonique n'est pas atteint malgré un temps de contact moyen supérieur à une heure.

- L'indice de Larson et l'indice de Leroy calculés pour les eaux traitées montrent que celles-ci sont non corrosives.
- Les résultats entre Akdolit Hydro Calcit et Neutralite sont similaires. A noter que durant l'étude, le volume de calcaire terrestre était inférieur à celui de calcaire marin.

<u>Consommation de réactif</u>: Les tableaux ci-dessous présentent l'évolution de la hauteur moyenne de calcaire dans le filtre au cours de l'étude (du 31 mai au 2 août), et la consommation moyenne de calcaire estimée (résultats moyens mesurés et/ou calculés).

SAINT SYLVAIN	Hauteur initiale	Hauteur finale	Delta hauteur	Temps de contact initial	Temps de contact final
	m	m	m	min	min
Akdolit Hydro Calcit	1.250	1.175	0.075	89	84
Neutralite	1.600	1.525	0.075	114	108

SAINT SYLVAIN	Consommation de calcaire en g par m³ d'eau filtrée	Consommation de calcaire en g par g de CO ₂ neutralisé
Akdolit Hydro Calcit	48.8	10.6
Neutralite	41.3	29.1

Commentaires:

• En 10 semaines de suivi (63 jours), le niveau dans les filtres a baissé d'environ 7,5 cm. La variation de hauteur a été la même dans les deux filtres.

⇒ Conclusion

Bien que la conductivité respecte la référence de qualité et que l'eau ne soit pas corrosive, l'eau traitée n'est pas à l'équilibre calco-carbonique, et ce quel que soit le matériau utilisé (neutralite, calcaire terrestre). Une neutralisation finale à la soude pourra permettre d'atteindre l'équilibre calco-carbonique. Les installations de lavage doivent également être adaptées pour le lavage de calcaire terrestre.

III.2.3. Meilhards

⇒ Données techniques

Identifiant usine :	« Bois de Boudet » ; Meilhards			
Maître d'ouvrage :	Commune de Meilhards			
Origine eau(x) brute(s) :	Six captages (arrivées gravitaires) Trop-plein du second château d'eau communal			
Filière de traitement :	Neutralisation + désinfection UV + chloration			
Nombre et type de filtre :	Deux filtres ouverts avec plancher			
Dimension filtre(s) :	L=2m / I=2m / H=2,5 / S=4m ² (x2)			
Date de reconversion :	24/04/2012			
Date de déroulement des essais :	du 09/05/2012 au 01/08/2012			
Produit suivi :	Algafiltre Ca			

⇒ Résultats avant reconversion

Le tableau suivant présente un résultat d'analyse type avant substitution de la neutralite :

Eau	Date analyse	Cond. 25℃ (μS/cm)	рН	TH (°F)	TAC (℉)	CO ₂ (mg/L)	Ca (mg/L)	Mg (mg/L)	HCO₃ (mg/L)
Eau brute	09/11/2005	79.4	5.25	2.1	0	99	4.7	2	20.8
Eau traitée	15/06/2011	200.1	8.3	8.8	8.5	0.94	27.6	3.8	101.09

⇒ Conditions de test

Produit(s) testé(s):

Un seul des deux filtres a été reconverti. Le deuxième filtre à neutralite a été conservé comme référence.

Matériau	Granulométrie	Volume initial	Hauteur initiale
NeutralG	2 à 4 mm	3 m ³	0,75 m
Algafiltre Ca	1,5 à 2,5 mm	4,6 m ³	1,15 m

Volume total filtré (13semaines)	Débit moyen* journalier (moyenne 13sem)	Débit moyen * journalier min	Débit moyen* journalier max	Temps de marche par jour	Temps de contact es-timé
8 154 m ³	680 m³/j	81 m³/j	125 m³/j	20 h	Neutralite : 74min AlgafiltreCa : 113 min

^{*} débit en sortie d'usine sur mise en distribution

Déroulement du test:

Le tableau suivant récapitule les évènements et interventions intervenus sur le filtre ou l'usine pendant la durée du suivi (pour plus de détail se référer à la fiche de prélèvement en annexe) :

Recharge :	Aucune recharge n'a été faite durant la période du suivi.
Lavage :	Un lavage du filtre (air+eau) a été fait tous les mois.
Phasage :	Voir évènement particulier
Evènement particulier significatif :	Le 14/06/2012, en cours d'étude, les pompes servant à alimenté l'usine du « Bois de Boudet » depuis les bâches de stockage de « La Ganne » ont été changées (<i>voir schéma suivant</i>). Les nouvelles pompes mises en place ont un débit de 18 m³/h (contre un débit de 6 m³/h -14 m³/h théorique-) pour les anciennes. En conséquence, le débit d'arrivée d'eau depuis « La Ganne » a été triplé, ce qui a entrainé plusieurs désagréments sur l'usine (décolmatage des canalisations, passage des filtres en trop plein)

sources 1 sources 2 Lorsque le réservoir est en demande, les Gravitaire pompes se mettent en route (foncionnement alterné, assevissement à la hauteur d'eau dans le réservoir par flotteur) Bâches de "Bois de Boudet" stockage 1+1 pompes de 18m3/h "La Ganne" Unité de traitement (filtres + UV + chloration) Réservoir distribution

Schéma de fonctionemment de l'unité de distribution de Meilhards

Figure 7: Schéma de l'UDI de Meilhards

Points de prélèvement :

Eau brute : Regard de mélange des eaux brutes **Eau traitée :** Vidanges respectives de chaque filtre

⇒ Résultats

Exploitation

Aucun ajustement dans l'exploitation de la station n'a du être fait après le changement de matériau.

<u>Lavage</u>: Le lavage du calcaire terrestre s'est révélé un peu plus difficile que celui de la neutralite. Même après trois mois de mise en service, l'Algafiltre Ca libérait des fines, rendant l'eau trouble et le nettoyage plus long.

Suite au changement des pompes d'alimentation de la station depuis « La Ganne », un dépôt rouille anormalement important est apparu à la surface des filtres. Attribué au décolmatage des canalisations suite aux travaux, les filtres ont soigneusement été lavés le 27/06. Le 18/07, le filtre à Neutralite était à nouveau encrassé alors que le filtre à Algafiltre Ca était demeuré propre.

Deux hypothèses pourraient expliquer ce phénomène :

 le temps de contact dans le filtre à neutralite étant plus faible, un volume d'eau plus important transite dans ce filtre, ce qui augmente les volumes de dépôts, la granulométrie fine de l'Aglafiltre Ca freine l'écoulement de l'eau à travers le plancher, ralentissant d'avantage la vitesse de filtration, avec la même conséquence que dans l'hypothèse précédente

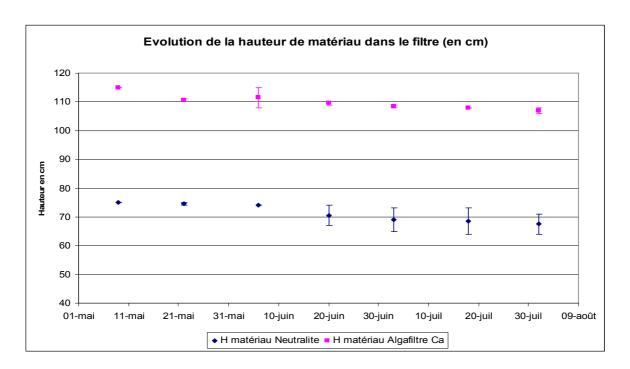
Qualité

Le tableau ci-dessous récapitule les résultats d'analyse du suivi qualité :

MEILHARDS		Eau brute			Eau traitée Calcaire terrestre			Eau traitée Calcaire marin		
Paramètres	Unité	min	moy	max	min	moy	max	min	moy	max
рН	unités pH	6.0	6.5	6.8	8.0	8.1	8.3	8.0	8.2	8.4
Titre hydrotimétrique ou dureté totale	F	1.5	1.9	2.3	7.6	10.2	12.4	7.9	10.1	12.5
Alcalinité totale (TAC)	F	1.2	1.5	1.7	7.1	9.4	11.7	7.4	9.4	11.6
Conductivité corrigée à 25℃	μS/cm	65	78	102	179	229	280	182	228	285
Chlorures	mg Cl/l	5.2	5.7	6.1	5.2	18.5	97.0	5.2	5.7	6.2
Potassium	mg K/l	0.7	1.0	1.5	0.7	1.4	3.2	0.8	1.1	1.4
Sodium	mg Na/l	5.6	6.0	6.3	5.7	11.9	48.0	5.9	6.1	6.3
Sulfates	mg SO4/I	1.7	2.3	2.8	1.8	2.2	2.6	2.1	2.6	3.1
Nitrates	mg NO3/I	8.5	10.9	13.0	8.6	11.1	13.0	9.1	11.2	13.0
Calcium (calcul TH)	mg Ca/l	4.0	5.0	5.8	28.0	38.2	46.0	26.0	33.6	42.0
Magnésium (calcul TH)	mg Mg/l	1.3	1.7	2.1	1.5	1.9	2.2	3.1	4.0	4.8

<u>Equilibre calco-carbonique</u>: Le pH et la température sur site ont été mesurés à chaque prélèvement. Le tableau suivant présente les résultats du calcul de l'équilibre calco-carbonique, basé sur les mesures de terrain et sur les résultats d'analyses laboratoire.

MEILHARDS		Eau brute		Eau traitée Calcaire terrestre			Eau traitée Calcaire marin		
Paramètres	min	moy	max	min	moy	max	min	moy	max
pH terrain (1)	6.20	6.26	6.40	7.30	7.60	7.80	7.40	7.69	8.00
pH équilibre (2)	8.42	8.61	8.78	7.97	8.17	8.39	8.00	8.23	8.44
ΔpH (2)-(1)	2.22	2.35	2.48	0.35	0.57	1.09	0.20	0.54	1.04
Caractère	Agressif	Agressif	Agressif	Agressif	Agressif	Agressif	Equilibre	Agressif	Agressif
CO ₂ agressif (mg/l)	12.01	17.14	21.08	1.89	3.38	6.78	0.97	3.00	5.46


Commentaires:

- Les eaux en sortie de traitement conservent leur caractère agressif. L'équilibre calcocarbonique n'est pas atteint malgré un temps de contact moyen supérieur à une heure. Cependant, les paramètres physico-chimiques en sortie de traitement sont satisfaisants vis-àvis valeurs de référence qualité (conductivité >200 μS/cm). Le TH et TAC sont supéreiurs à 8F).
- L'indice de Larson et l'indice de Leroy calculés pour les eaux traitées montrent que celles-ci sont **non corrosives**.
- Les résultats entre Algafiltre Ca et Neutralite sont très similaires. A noter que durant l'étude, le volume de calcaire terrestre était supérieur à celui de calcaire marin.

<u>Consommation de réactif</u>: Les tableaux ci-dessous présentent l'évolution de la hauteur moyenne de calcaire dans le filtre au cours de l'étude, et la consommation moyenne de calcaire estimée (résultats moyens mesurés et/ou calculés).

Produit	Hauteur initiale	Hauteur finale	Delta hauteur	Temps de contact initial	Temps de contact final
	m	m	m	min	min
Algafiltre ca	1.150	1.070	0.080	113	105
Neutralite	0.750	0.675	0.075	74	67

MEILHARDS	Consommation de calcaire en g par m³ d'eau filtrée	Consommation de calcaire en g par g de CO ₂ neutralisé
Algafiltre Ca	51.0	3.6
Neutralite	40.5	2.9

Commentaires:

- En 13 semaines de suivi (84 jours), la baisse du niveau de calcaire a été similaire pour les deux matériaux (7,5 à 8 cm).
- Le niveau de calcaire dans les filtres est resté sensiblement homogène.

⇒ Conclusion

Bien que la conductivité respecte la référence de qualité et que l'eau ne soit pas corrosive, l'eau traitée n'est pas à l'équilibre calco-carbonique, et ce quel que soit le matériau utilisé (neutralite, calcaire terrestre). Une neutralisation finale à la soude pourra permettre d'atteindre l'équilibre calco-carbonique. Les installations de lavage doivent également être adaptées pour le lavage de calcaire terrestre.

Le remplacement des pompes de « La Ganne » a crée des perturbations hydrauliques à l'origine de l'encrassement rapide des filtres. Un asservissement à la hauteur d'eau dans le regard d'arrivée d'eau brute de l'usine de « Bois de Boudet » pourrait permettre de réguler le débit entrant sur les filtres, et ainsi éviter les pertes d'eau inutile (trop plein).

III.2.4. Ladignac le long

⇒ Données techniques

Identifiant usine :	« Les roches blanches » ; Ladignac le Long
Maître d'ouvrage :	Commune de Ladignac le Long
Origine eau(x) brute(s) :	Un forage (débit de pompage 20m³/h)
Filière de traitement :	Neutralisation + chloration + désinfection UV
Nombre et type de filtre :	Un filtre ouvert avec plancher
Dimension filtre(s) :	L =5m / I=2,45m / H=3,15 / S=12,25m ²
Date de reconversion :	18/04/2012
Date de déroulement des essais :	du 09/05/2012 au 01/08/2012
Produit suivi :	Filtracarb L-SB 1.5/2.5

⇒ Résultats avant reconversion

Le tableau suivant présente un résultat d'analyse type avant substitution de la neutralite :

Eau	Date analyse	Cond. 25℃ (μS/cm)	рН	TH (°F)	TAC (℉)	CO ₂ (mg/L)	Ca (mg/L)	Mg (mg/L)	HCO₃ (mg/L)
Eau brute	03/01/2012	103	5.92	2.75	2.6	46.7	6.5	2.5	31.73
Eau traitée	07/03/2011	392	7.9	15.6	16.8	36	59.6	7.3	

⇒ Conditions de test

Produit(s) testé(s):

Matériau	Granulométrie	Volume initial	Hauteur initiale
Filtracarb LS-B	1,2 -2,5 mm	12 m ³	0,98 m

Volume total filtré (13semaines)	Débit moyen* journalier (moyenne 13sem)	Débit moyen * journalier min	Débit moyen* journalier max	Temps de marche par jour	Temps de contact es-timé
23 454 m ³	279 m³/j	229 m³/j	323 m³/j	12 h	32 min

^{*} débit en sortie d'usine sur mise en distribution

Déroulement du test:

Le tableau suivant récapitule les évènements et intervention intervenus sur le filtre ou l'usine pendant la durée du suivi (pour plus de détail se référer à la fiche de prélèvement en annexe) :

Recharge :	Aucune recharge n'a été faite durant la période du suivi.
Lavage :	Un lavage du filtre (air+eau) a été fait toutes les trois semaines.
Phasage :	Aucune modification de process, de volume de filtration ou de méthodologie de prélèvement n'a été faite pendant la durée du suivi.
Evènement particulier significatif :	Une fuite sur le réseau entrainant une surconsommation d'eau a été signalée entre le 30 mai et le 03 juillet. Débit de perte estimé : 120 à 200 m³/j.

Points de prélèvement :

Eau brute : Robinet de prélèvement sur arrivée d'eau brute **Eau traitée :** Robinet de prélèvement sur réserve d'eau traitée

⇒ Résultats

Exploitation

Aucun ajustement dans l'exploitation de la station n'a été effectué après le changement de matériau.

Comme c'était déjà le cas avant l'étude, l'exploitant souligne une minéralisation de l'eau un peu trop importante (entartrage).

<u>Lavage</u>: Les cycles de lavage et leur fréquence sont restés les même qu'avec la neutralite, sans impact sur le traitement.

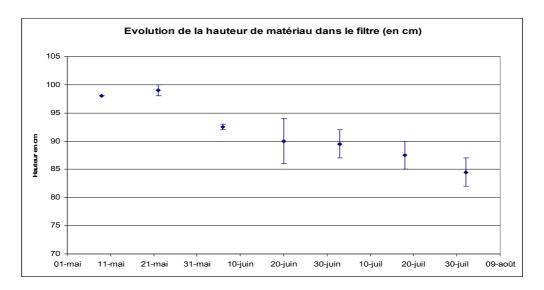
Qualité

Le tableau ci-dessous récapitule les résultats d'analyse du suivi qualité :

		Eau brute			Eau traitée		
Paramètres	Unité	min	moy	max	min	moy	max
рН	unités pH	6.3	6.6	6.8	7.3	7.8	8.0
Titre hydrotimétrique ou dureté totale	F	2.8	2.9	3.0	13.9	14.4	14.8
Alcalinité totale (TAC)	F	2.1	2.3	2.5	13.2	13.6	14.5
Conductivité corrigée à 25℃	μS/cm	98	107	125	294	314	334
Chlorures	mg Cl/l	6.8	7.2	7.7	7.0	7.4	7.6
Potassium	mg K/I	1.6	1.8	2.0	1.6	1.7	1.8
Sodium	mg Na/l	7.2	7.4	7.6	7.3	7.5	7.7
Sulfates	mg SO4/I	3.1	3.4	3.8	3.2	3.3	3.6
Nitrates	mg NO3/I	11.0	12.3	15.0	12.0	12.0	12.0
Calcium (calcul TH)	mg Ca/l	6.5	6.8	7.4	50.0	51.8	53.0
Magnésium (calcul TH)	mg Mg/l	2.7	2.8	3.0	3.3	3.4	3.4

<u>Equilibre calco-carbonique</u>: Le pH et la température sur site ont été mesurés à chaque prélèvement. Le tableau suivant présente les résultats du calcul de l'équilibre calco-carbonique, basé sur les mesures de terrain et sur les résultats d'analyses laboratoire.

LADIGNAC LE LONG	Eau brute Eau traitée					
Paramètres	min	moy	max	min	moy	max
pH terrain (1)	6.10	6.26	6.60	7.00	7.03	7.10
pH équilibre (2)	9.55	9.63	9.73	7.89	7.98	8.41
ΔpH (2)-(1)	3.00	3.36	3.63	0.80	0.95	1.31
Caractère	Agressif	Agressif	Agressif	Agressif	Agressif	Agressif
CO ₂ agressif (mg/l)	14.08	30.47	42.15	12.06	19.78	22.13


Commentaires:

- Les eaux brutes sont fortement chargées en CO₂ agressif.
- Les eaux en sortie de traitement conservent leur caractère agressif. L'équilibre calcocarbonique n'est pas atteint avec un temps de contact de 30 minutes. Cependant, les paramètres physico-chimiques en sortie de traitement sont satisfaisants vis-à-vis valeurs de référence qualité (conductivité >200 µS/cm). Le TH et TAC sont largement supérieurs à 8°F, de l'ordre de 14 °f.
- L'indice de Larson et l'indice de Leroy calculés pour les eaux traitées montrent que celles-ci sont **non corrosives.**
- Ces résultats sont similaires à inférieur à ceux obtenus avec la neutralite.
- La mise en place d'un système de dégazage de l'eau brute est actuellement à l'étude par le maitre d'ouvrage.

<u>Consommation de réactif</u>: Les tableaux ci-dessous présentent l'évolution de la hauteur moyenne de calcaire dans le filtre au cours de l'étude, et la consommation moyenne de calcaire estimée (résultats moyens mesurés et/ou calculés).

Hauteur initiale	Hauteur finale	Delta hauteur	Temps de contact initial	Temps de contact final
m	m	m	min	min
1.130	1.120	0.010	32	28

LADIGNAC LE LONG	Consommation de calcaire en g par m³ d'eau filtrée	Consommation de calcaire en g par g de CO ₂ neutralisé
Filtracarb L-SB	82.6	7.7

Commentaires:

- En 13 semaines de suivi (84 jours), le niveau dans le filtre a baissé d'environ 10 cm.
- Le niveau de calcaire n'est pas resté homogène : quelques variations de niveau d'un endroit à l'autre du filtre ont été notées.

⇒ Conclusion

Bien que la conductivité respecte la référence de qualité et que l'eau ne soit pas corrosive, l'eau traitée n'est pas à l'équilibre calco-carbonique. Bien que les valeurs de TH et de TAC soient un peu élevées par rapport à ce qui était attendu, le pH d'équilibre de l'eau traitée est de l'ordre de 8,0. Une neutralisation finale à la soude pourra permettre d'atteindre l'équilibre calco-carbonique. Nous conseillerions au maître d'ouvrage de ne pas mettre en place d'élimination de CO_2 en amont du calcaire terrestre, car le pH obtenu est satisfaisant vis-à-vis de la désinfection. En cas d'élimination de CO_2 en amont du calcaire, le pH d'équilibre sera beaucoup plus élevé et entrainera une baisse sensible de l'efficacité de la désinfection par le chlore. Les installations de lavage doivent également être adaptées pour le lavage de calcaire terrestre.

III.2.5. Saint Mamet la Salvetat

⇒ Données techniques

Identifiant usine :	« Pont de Lascombes » ; Saint Mamet la Salvetat
Maître d'ouvrage :	Commune de Saint Mamet
Origine eau(x) brute(s) :	Eau de surface (pompage dans rivière via étang de décantation)
Filière de traitement :	Ultrafiltration + injection de CO ₂ + chloration + neutralisation + désinfection UV
Nombre et type de filtre :	Deux filtres fermés sous pression
Dimension filtre(s) :	Inconnues
Date de reconversion :	03/05/2012
Date de déroulement des essais :	du 1105/2012 au 09/08/2012
Produit suivi :	Akdolit Karbonat C

⇒ Résultats avant reconversion

Le tableau suivant présente un résultat d'analyse type avant substitution de la neutralite :

Eau	Date analyse	Cond. 25℃ (μS/cm)	рН	TH (°F)	TAC (℉)	CO ₂ (mg/L)	Ca (mg/L)	Mg (mg/L)	HCO₃ (mg/L)
Eau brute	08/09/2011	51	8.45	1.41	1.1	<1	2.47	1.93	13.8
Eau traitée	10/10/2011	132	6.8	5.6	5	7.6	18.9	3.11	61.1

Produit(s) testé(s):

Un seul des deux filtres a été reconverti.

Le deuxième filtre à neutralite a été conservé comme référence.

Matériau	Granulométrie	Volume initial	Hauteur initiale
NeutralG	2 à 4 mm	< 6 m ³	-
Akdolit Karbonat C	0,5 à 2 mm	12,7 m ³	-

Volume total filtré (15semaines)	Débit moyen* journalier (moyenne 15sem)	Débit moyen * journalier min	Débit moyen* journalier max	Temps de marche par jour	Temps de contact es-timé	
51154 m ³	534 m³/j	439 m³/j	652 m ³ /j	12 h	Akdolit C : 34 min	

^{*} débit en sortie d'usine sur mise en distribution

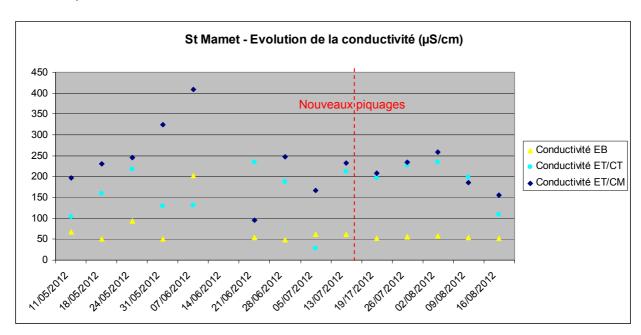
Déroulement du test:

Le tableau suivant récapitule les évènements et interventions intervenus sur le filtre ou l'usine pendant la durée du suivi (pour plus de détail se référer à la fiche de prélèvement en annexe) :

Recharge :	Aucune recharge n'a été faite durant la période du suivi.		
Lavage :	Un lavage du filtre (air+eau) a été fait tous les quinze jours.		
Phasage :	Suite à des résultats d'analyses d'eau traitée semblant inco- hérents, le point de prélèvement eau traitée a été modifié le 17/07. Deux nouveaux piquages (un à chaque sortie de filtre) ont été créés.		
Evènement particulier significatif :	Changement du point de prélèvement		

Points de prélèvement :

Eau brute : Robinet de prélèvement tableau ultrafiltration


Eau traitée : Robinet de prélèvement commun sur conduite de sortie des filtres / Piquages sur sortie de chaque filtre.

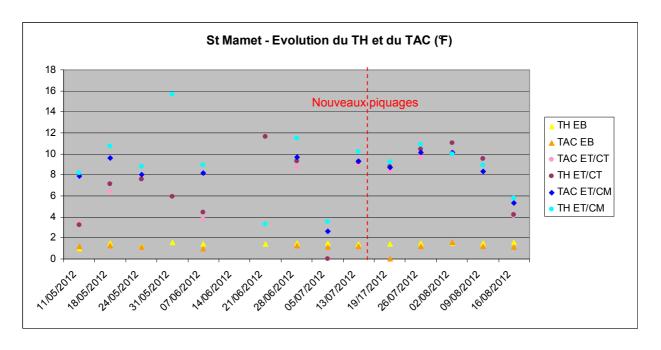


Figure 8: Points de prélèvement eau traitée de Saint Mamet

⇒ Résultats

Les résultats avant le changement de point de prélèvement ne semblent pas concluants. Beaucoup d'incohérences dans les valeurs (conductivité passant de 100 à 400, valeurs eaux brutes supérieures à l'eau traitées etc.) tendent à prouver une contamination des échantillons. Les valeurs des prélèvements réalisés après le 17 juillet, bien que présentant de fort écart, semblent plus cohérentes.

Dans la suite de ce rapport, seules les valeurs des prélèvements postérieurs au 17 juillet sont présentées.

Le tableau ci-dessous récapitule les résultats d'analyse du suivi qualité du 17/08 au 16/08 :

SAINT MAMET LA SALVETAT		Eau brute			Eau traitée Calcaire terrestre			Eau traitée Calcaire marin		
Paramètres	Unité	min	moy	max	min	moy	max	min	moy	max
рН	unités pH	7.0	7.3	7.6	7.6	7.9	8.1	7.8	8.0	8.2
Titre hydrotimétrique ou dureté totale	F	1.4	1.5	1.6	4.2	8.8	11.0	5.8	9.0	10.9
Alcalinité totale (TAC)	F	1.1	1.3	1.6	4.1	8.2	10.1	5.3	8.5	10.1
Conductivité corrigée à 25℃	μS/cm	53	54	58	109	193	235	155	208	259
Chlorures	mg Cl/l	4.8	4.9	5.0	6.4	6.7	7.0	6.3	6.7	7.1
Potassium	mg K/l	0.9	1.0	1.1	0.9	1.0	1.0	0.8	1.0	1.1
Sodium	mg Na/l	3.8	3.9	3.9	3.8	3.9	3.9	3.9	3.9	3.9
Sulfates	mg SO4/I	0.7	0.8	0.8	0.7	0.8	0.8	0.8	1.2	1.6
Nitrates	mg NO3/I	6.0	6.1	6.2	6.0	6.1	6.2	4.3	5.2	6.0
Calcium (calcul TH)	mg Ca/l	2.8	3.1	3.2	14.0	32.0	41.0	19.0	31.0	40.0
Magnésium (calcul TH)	mg Mg/l	1.8	1.9	1.9	1.5	1.8	2.0	2.2	2.9	4.1

⇒ Conclusion

Les résultats qualité en sortie d'usine sont variables, mais l'on constate que ces variations sont analogues d'un filtre à l'autre. Bien que l'équilibre calco-carbonique ne soit pas atteint, les résultats de qualité sont bons et similaires, avec des résultats légèrement meilleurs pour la neutralite

Une neutralisation finale à la soude pourra permettre d'atteindre l'équilibre calco-carbonique. Les installations de lavage doivent également être adaptées pour le lavage de calcaire terrestre.

III.3. RESULTATS « USINES SUIVIES »

III.3.1. Saint Pardoux l'Ortigier

⇒ Données techniques

Identifiant usine :	« Croix de fer » ; Saint Pardoux l'Ortigier		
Maître d'ouvrage :	Syndicat des eaux de Perpezac le Noir		
Origine eau(x) brute(s) :	Divers captages + forages		
Filière de traitement :	Filtre à sable + neutralisation + désinfection UV		
Nombre et type de filtre :	Deux filtres ouverts avec plancher		
Dimension filtre(s) :	L=3m / I=2,5m / H=3,73m / S=7,5m ² (x2)		
Date de création/reconversion :	2002 / 2010		
Date de déroulement des essais :	du 09/05/2012 au 01/08/2012		
Produit suivi :	Filtracarb SB / L-SB		

⇔ Conditions de test

Produit(s) testé(s):

Matériau	Granulométrie	Volume initial*	Hauteur initiale*
Filtracarb L-SB	1,5 à 2,5 mm	~ 3,75 m ³	~ 50cm

^{*}valeurs estimées

Volume total filtré (13semaines)	Débit moyen* journalier (moyenne 13sem)	Débit moyen * journalier min	Débit moyen* journalier max	Temps de marche par jour	Temps de contact es- timé
69 081 m ³	828 m³/j	728 m³/j	1 000 m³/j	10 h	< 5 min

^{*} débit en sortie d'usine sur mise en distribution

Déroulement du test:

Le tableau suivant récapitule les évènements et interventions intervenus sur le filtre ou l'usine pendant la durée du suivi (pour plus de détail se référer à la fiche de prélèvement en annexe) :

Recharge :	Afin de maintenir la qualité de l'eau, des recharges hebdomadaires de calcaire ont été effectuées.
Lavage :	Un lavage des filtres air+eau a été fait environ hebdomadairement, tous les lundis.
Phasage :	Aucune modification de process ou de méthodologie de prélèvement n'a été faite pendant la durée du suivi.
Evènement particulier significatif :	Aucun évènement significatif durant la période de suivi.

Points de prélèvement :

Eau brute : Vidange cuve de stockage eau brute

Eau traitée : Robinet de prélèvement sur mise en distribution

⇒ Résultats

Exploitation

La neutralisation sur l'usine de Saint Pardoux l'Ortigier est réduite à son minimum. En effet, la soufflante de dégazage de l'eau brute ayant été sous dimensionnée, l'exploitant ne peut l'utiliser. Le volume de calcaire dans les filtres a du être diminué pour ne pas rendre l'eau trop dure.

Les deux filtres sont prévus pour accueillir une dizaine de tonnes de calcaire chacun. Durant l'étude, les filtres étaient remplis de moins de 5 tonnes.

Afin de maintenir une neutralisation/reminéralisation optimale, l'exploitant a choisi de réguler hebdomadairement le volume de calcaire en rajoutant selon les besoins et le mélange d'eau brute (sources ou forage) du Filtracarb dans les filtres.

Lavage: Le lavage du Filtracarb semble plus difficile que celui de la neutralite :

- Le produit contient plus de fine et colmate plus facilement,
- La puissance de la soufflante de lavage, originalement prévue pour la neutralite, n'est pas assez puissante,

 Les fines de Filtracarb sont trop denses pour être évacuées par trop-plein, contrairement à la neutralite.

Qualité

Le tableau ci-dessous récapitule les résultats d'analyse du suivi qualité :

SAINT PARDOUX L'ORTIGIER		Eau brute			E	Eau traitée		
Paramètres	Unité	min	moy	max	min	moy	max	
pH	unités pH	6.4	6.8	7.1	7.2	7.6	7.9	
Titre hydrotimétrique ou dureté totale	F	3.3	3.6	4.0	7.6	9.2	9.8	
Alcalinité totale (TAC)	F	2.2	2.5	2.9	6.5	8.0	8.5	
Conductivité corrigée à 25℃	μS/cm	117	125	139	200	229	241	
Chlorures	mg Cl/l	9.3	9.8	10.0	9.3	10.1	12.0	
Potassium	mg K/I	1.3	1.4	1.5	1.2	1.3	1.4	
Sodium	mg Na/l	8.2	8.5	8.8	8.2	8.7	9.3	
Sulfates	mg SO4/I	4.3	4.5	4.8	4.1	4.8	5.8	
Nitrates	mg NO3/I	14.0	14.6	15.0	12.0	13.9	15.0	
Calcium (calcul TH)	mg Ca/l	7.7	8.4	9.4	25.0	30.1	32.0	
Magnésium (calcul TH)	mg Mg/l	3.3	3.5	4.0	3.4	4.0	5.5	

Equilibre calco-carbonique: Le pH et la température sur site ont été mesurés à chaque prélèvement. Le tableau suivant présente les résultats du calcul de l'équilibre calco-carbonique, basé sur les mesures de terrain et sur les résultats d'analyses laboratoire.

SAINT PARDOUX L'ORTIGIER		Eau brute		Eau traitée		
Paramètres	min	moy	max	min	moy	max
pH terrain (1)	6.20	6.51	6.80	6.9	6.97	7.1
pH équilibre (2)	9.24	9.41	9.57	8.26	8.32	8.51
ΔpH (2)-(1)	2.44	2.89	3.37	1.16	1.35	1.39
Caractère	Agressif	Agressif	Agressif	Agressif	Agressif	Agressif
CO ₂ agressif (mg/l)	12.7	19.39	30.14	12.5	16.75	20.7

Commentaires:

- Les eaux brutes sont fortement chargées en CO₂ agressif.
- Les eaux en sortie de traitement conservent leur caractère agressif. L'équilibre calcocarbonique n'est pas atteint. Cependant, les paramètres physico-chimiques en sortie de traitement sont satisfaisants vis-à-vis valeurs de référence qualité (conductivité >200 μS/cm). Le TH et TAC sont supérieurs à 8F).
- L'indice de Larson et l'indice de Leroy calculés pour les eaux traitées montrent que celles-ci sont **non corrosives à faiblement corrosive**.
- La soufflante de dégazage de l'eau brute est en commande et sera prochainement installée en tête de traitement.

<u>Consommation de réactif</u> : Du fait des recharges hebdomadaire des filtres, la consommation moyenne en calcaire n'a pas pu être estimée.

Conclusions:

Bien que la conductivité respecte la référence de qualité et que l'eau ne soit pas corrosive, l'eau traitée n'est pas à l'équilibre calco-carbonique. Bien que les valeurs de TH et de TAC soient conformes à ce qui était attendu, le pH d'équilibre de l'eau traitée est de l'ordre de 8,0. Une neutralisation finale à la soude pourra permettre d'atteindre l'équilibre calco-carbonique. Nous conseillerions au maître d'ouvrage de ne pas mettre en place d'élimination de CO_2 en amont du calcaire terrestre, car le pH obtenu est satisfaisant vis-à-vis de la désinfection. En cas d'élimination de CO_2 en amont du calcaire, le pH d'équilibre sera beaucoup plus élevé et entrainera une baisse sensible de l'efficacité de la désinfection par le chlore. Les installations de lavage doivent également être adaptées pour le lavage de calcaire terrestre.

III.3.2. Lavert

⇒ Données techniques

Identifiant usine :	« Lavert » ; Favars
Maître d'ouvrage :	Syndicat des eaux du Maumont
Origine eau(x) brute(s) :	Trois forages
Filière de traitement :	Neutralisation + chloration
Nombre et type de filtre :	Un filtre ouvert sans plancher
Dimension filtre(s) :	L=3,5m / I=3m / H=1,6m / S=10,5m ²
Date de reconversion :	2010
Date de déroulement des essais :	du 10/05/2012 au 02/08/2012
Produit suivi :	Filtracarb SB

⇒ Conditions de test

Produit(s) testé(s):

Matériau	Granulométrie	Volume initial	Hauteur initiale
Filtracarb SB	1,5 à 2,5 mm	Théorique 14 m ³	Théorique 1,4 m

Volume total filtré (13semaines)	Débit moyen* journalier (moyenne 13sem)	Débit moyen * journalier min	Débit moyen* journalier max	Temps de marche par jour	Temps de contact es-timé
24 849 m ³	297 m³/j	251 m³/j	387 m³/j	24 h	72 min

^{*} débit en entrée d'usine sur les arrivées des forages

Déroulement du test:

Le tableau suivant récapitule les évènements et interventions intervenus sur le filtre ou l'usine pendant la durée du suivi (pour plus de détail se référer à la fiche de prélèvement en annexe) :

Recharge :	Aucune recharge n'a été faite durant la période du suivi.
Lavage :	Un rinçage du filtre par vidange a été fait toutes les semaines.
Phasage :	Aucune modification de process, de volume de filtration ou de méthodologie de prélèvement n'a été faite pendant la durée du suivi.
Evènement particulier significatif :	Aucun évènement significatif durant la période de suivi.

Points de prélèvement :

Eau brute : Robinet de prélèvement sur arrivée d'eau brute

Eau traitée : Robinet de prélèvement sur mise en distribution sortie réservoir de stockage

⇒ Résultats

Exploitation

Lors de la reconversion du filtre en 2010, une rehausse des parois et des conduites de récupération d'eau traitée ont été faites, pour permettre d'accueillir un volume de Filtracarb SB suffisant.

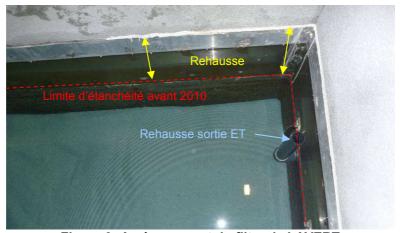


Figure 9: Aménagement du filtre de LAVERT

<u>Lavage</u>: Aucun système de lavage n'existe pour ce filtre. Le nettoyage du filtre se fait hebdomadairement par purge. Une fois par an, l'exploitant nettoie manuellement le filtre en remuant le matériau en profondeur.

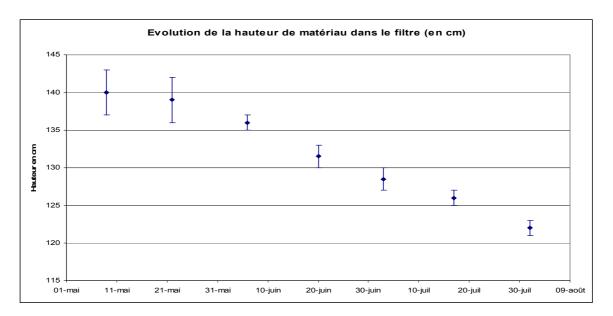
Qualité

Le tableau ci-dessous récapitule les résultats d'analyse du suivi qualité :

LAVERT			Eau brute	е	E	au traité	е
Paramètres	Unité	min	moy	max	min	moy	max
рН	unités pH	6.3	6.7	7.0	7.4	7.9	8.2
Titre hydrotimétrique ou dureté totale	F	3.1	3.2	3.4	10.4	12.4	14.4
Alcalinité totale (TAC)	F	2.3	2.5	2.8	10.2	11.6	12.5
Conductivité corrigée à 25℃	μS/cm	104	112	129	251	277	299
Chlorures	mg Cl/l	7.1	7.6	8.1	7.8	8.9	15.0
Potassium	mg K/I	0.8	8.0	0.9	0.8	0.9	0.9
Sodium	mg Na/l	7.5	7.6	7.8	7.8	8.1	8.6
Sulfates	mg SO4/I	3.2	3.9	4.5	3.3	3.7	4.2
Nitrates	mg NO3/I	12.0	12.4	13.0	6.6	9.7	12.0
Calcium (calcul TH)	mg Ca/l	7.8	11.6	52.0	37.0	44.7	52.0
Magnésium (calcul TH)	mg Mg/l	2.5	2.8	3.3	2.7	3.0	3.2

<u>Equilibre calco-carbonique</u>: Le pH et la température sur site ont été mesurés à chaque prélèvement. Le tableau suivant présente les résultats du calcul de l'équilibre calco-carbonique, basé sur les mesures de terrain et sur les résultats d'analyses laboratoire.

LAVERT		Eau brute			Eau traitée			
Paramètres	min	min moy max			moy	max		
pH terrain (1)	6.35	6.48	6.6	7	7.04	7.1		
pH équilibre (2)	8.58	9.28	9.47	7.91	8.01	8.14		
ΔpH (2)-(1)	2.23	2.80	3.07	0.81	0.96	1.14		
Caractère	Agressif	Agressif	Agressif	Agressif	Agressif	Agressif		
CO ₂ agressif (mg/l)	13.0	19.92	20.9	15.3	17.72	20.5		


Commentaires:

- Les eaux brutes sont très riches en CO₂ agressif.
- Les eaux en sortie de traitement conservent leur caractère agressif. L'équilibre calcocarbonique n'est pas atteint malgré un temps de contact moyen supérieur à une heure. Cependant, les paramètres physico-chimiques en sortie de traitement sont satisfaisants vis-àvis valeurs de référence qualité (conductivité >200 μS/cm). Le TH et TAC sont supérieurs à 8F).
- L'indice de Larson et l'indice de Leroy calculés pour les eaux traitées montrent que celles-ci sont non corrosives à faiblement corrosives.

<u>Consommation de réactif</u>: Les tableaux ci-dessous présentent l'évolution de la hauteur moyenne de calcaire dans le filtre au cours de l'étude, et la consommation moyenne de calcaire estimée (résultats moyens mesurés et/ou calculés).

Hauteur initiale	Hauteur finale	Delta hauteur	Temps de contact initial	Temps de contact final
m	m	m	min	min
1.40	1.22	0.18	72	62

LAVERT	Consommation de calcaire en g par m³ d'eau filtrée	Consommation de calcaire en g par g de CO ₂ neutralisé
Filtracarb SB	98.9	41.4

En 13 semaines de suivi (84 jours), le niveau dans le filtre a baissé d'environ 18 cm.

Conclusions:

Bien que la conductivité respecte la référence de qualité et que l'eau ne soit pas corrosive, l'eau traitée n'est pas à l'équilibre calco-carbonique. Une neutralisation finale à la soude pourra permettre d'atteindre l'équilibre calco-carbonique. Les installations de lavage doivent également être adaptées pour le lavage de calcaire terrestre.

III.3.3. Sainte Féréole

⇒ Données techniques

Identifiant usine :	Sainte Féréole
Maître d'ouvrage :	Syndicat des eaux du Maumont
Origine eau(x) brute(s) :	Trois sources
Filière de traitement :	Neutralisation + chloration
Nombre et type de filtre :	Un filtre ouvert sans plancher
Dimension filtre(s) :	L=3,1m / I=2,5m / H=2m / S=7,75m ²
Date de reconversion :	2010
Date de déroulement des essais :	du 10/05/2012 au 02/08/2012
Produit suivi :	Filtracarb SB

⇔ Conditions de test

Produit(s) testé(s):

Matériau	Granulométrie	Volume initial	Hauteur initiale
Filtracarb SB	1,5 à 2,5 mm	7m³	0,90 m

Volume total filtré (13semaines)	Débit moyen* journalier (moyenne 13sem)	Débit moyen * journalier min	Débit moyen* journalier max	Temps de marche par jour	Temps de contact es-timé
11 981 m ³	143 m³/j	133 m³/j	147 m³/j	8 h	23 min

^{*} débit en entrée d'usine sur les arrivées des sources

Déroulement du test:

Le tableau suivant récapitule les évènements et interventions intervenus sur le filtre ou l'usine pendant la durée du suivi (pour plus de détail se référer à la fiche de prélèvement en annexe) :

Recharge :	Aucune recharge n'a été faite durant la période du suivi.
Lavage :	Un rinçage du filtre par vidange a été fait toutes les semaines.
Phasage :	Aucune modification de process, de volume de filtration ou de méthodologie de prélèvement n'a été faite pendant la durée du suivi.
Evènement particulier significatif :	Le 22/05 la station a du être arrêter pour une durée de 24h suite à de trop fortes précipitations (turbidité de l'eau brute trop élevée).

Points de prélèvement

Eau brute : Robinet de prélèvement sur arrivée d'eau brute

Eau traitée : Robinet de prélèvement sur mise en distribution sortie réservoir de stockage

Exploitation

Aucun aménagement particulier n'a été réalisé lors de la reconversion du filtre en 2010.

<u>Lavage</u>: Aucun système de lavage n'existe pour ce filtre. Le nettoyage du filtre se fait hebdomadairement par purge. Une fois par an, l'exploitant nettoie manuellement le filtre en remuant le matériau en profondeur.

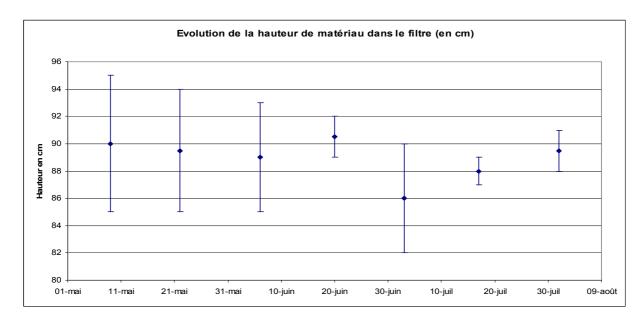
Qualité

Le tableau ci-dessous récapitule les résultats d'analyse du suivi qualité :

			Eau brut	е	E	au traité	е
Paramètres	Unité	min	moy	max	min	moy	max
pH	unités pH	5.9	6.5	6.8	7.6	7.9	8.2
Titre hydrotimétrique ou dureté totale	F	1.7	1.9	2.0	11.1	12.2	13.2
Alcalinité totale (TAC)	F	1.6	1.9	2.6	11.0	11.9	12.9
Conductivité corrigée à 25℃	μS/cm	81	86	105	259	290	337
Chlorures	mg Cl/l	5.8	6.2	6.5	7.5	10.7	14.0
Potassium	mg K/l	1.1	1.4	1.6	1.0	1.2	1.3
Sodium	mg Na/l	7.6	8.1	8.7	8.4	9.9	11.0
Sulfates	mg SO4/I	5.4	5.6	5.9	4.5	5.1	5.8
Nitrates	mg NO3/I	4.1	4.4	4.6	5.0	6.2	7.2
Calcium (calcul TH)	mg Ca/l	4.4	4.8	5.3	41.0	44.5	49.0
Magnésium (calcul TH)	mg Mg/l	1.6	1.7	1.8	2.4	2.5	2.7

<u>Equilibre calco-carbonique</u>: Le pH et la température sur site ont été mesurés à chaque prélèvement. Le tableau suivant présente les résultats du calcul de l'équilibre calco-carbonique, basé sur les mesures de terrain et sur les résultats d'analyses laboratoire.

SAINTE FEREOLE		Eau brute			Eau traitée			
Paramètres	min	moy	max	min	moy	max		
pH terrain (1)	6.2	6.34	6.8	7	7.05	7.1		
pH équilibre (2)	8.13	9.37	10.04	7.94	7.99	8.08		
ΔpH (2)-(1)	2.13	3.02	3.68	0.87	0.94	1.08		
Caractère	Agressif	Agressif	Agressif	Agressif	Agressif	Agressif		
CO ₂ agressif (mg/l)	5.5	20.45	37.7	14.3	17.66	21.3		


Commentaires:

- Les eaux brutes sont très riches en CO₂ agressif.
- Les eaux en sortie de traitement conservent leur caractère agressif. L'équilibre calcocarbonique n'est pas atteint malgré un temps de contact moyen d'environ 30 min. Cependant, les paramètres physico-chimiques en sortie de traitement sont satisfaisants vis-à-vis valeurs de référence qualité (conductivité >200 μS/cm). Le TH et TAC sont supérieurs à 8F).
- L'indice de Larson et l'indice de Leroy calculés pour les eaux traitées montrent que celles-ci sont **non corrosives à faiblement corrosives.**

<u>Consommation de réactif</u>: Les tableaux ci-dessous présentent l'évolution de la hauteur moyenne de calcaire dans le filtre au cours de l'étude, et la consommation moyenne de calcaire estimée (résultats moyens mesurés et/ou calculés).

Hauteur initiale	Hauteur finale	Delta hauteur	Temps de contact initial	Temps de contact final
m	m	m	min	min
0.900	0.895	0.005	23	23

SAINTE FEREOLE	Consommation de calcaire en g par m³ d'eau filtrée	Consommation de calcaire en g par g de CO ₂ neutralisé
Filtracarb SB	29.4	8.4

Commentaires:

- En 13 semaines de suivi (84 jours), le niveau dans le filtre moyen n'a pas baissé, ou très peu (~ 5mm).
- La hauteur de matériaux a varié de manière horizontale. De grandes différences de hauteur ont été notées entre deux points du filtre.
- Entre le 03 et le 10 juillet, la répartition du matériau dans le filtre a été complètement perturbée. Un creux s'est formé dans le coin opposé à la sortie d'eau traitée. A cette endroit, le calcaire semblait avoir était « expulsé » sur les cotés, comme le montre le schéma et la photo suivante. D'après l'exploitant, ce phénomène est récurrent.

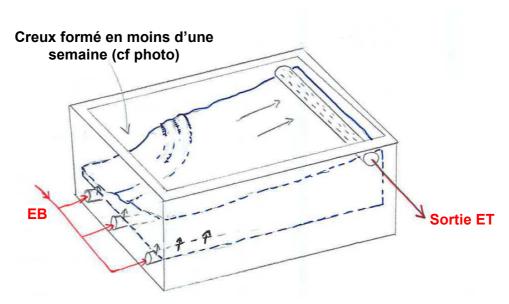


Figure 10: Filtre de Ste Féréole en fin d'étude

Figure 11: "Creux" dans le calcaire de Ste Féréole

⇒ Conclusion

La conception du filtre est inadaptée à un fonctionnement optimum de la neutralisation. Bien que la conductivité respecte la référence de qualité et que l'eau ne soit pas corrosive, l'eau traitée n'est pas à l'équilibre calco-carbonique. Une neutralisation finale à la soude pourra permettre d'atteindre l'équilibre calco-carbonique. Les installations de lavage doivent également être mises en place pour le lavage de calcaire terrestre.

Une vérification des drains d'arrivée d'eau brute doit être réalisée pour s'assurer qu'aucun colmatage ne vient perturber l'hydraulique de la filtration.

III.3.4. Sainte Fortunade

⇒ Données techniques

Identifiant usine :	Sainte Fortunade
Maître d'ouvrage :	Commune de Sainte Fortunade
Origine eau(x) brute(s) :	Une source
Filière de traitement :	Neutralisation + désinfection UV (en place non utilisés : chloration, injection de CO2)
Nombre et type de filtre :	Un filtre ouvert avec plancher
Dimension filtre(s) :	L=3 / I=2,5 / H=3 / S=7,5m ²
Date de construction :	2009
Date de déroulement des essais :	du 10/05/2012 au 02/08/2012
Produit suivi :	Filtracarb L-SB

⇒ Conditions de test

Produit(s) testé(s):

Matériau	Granulométrie	Volume initial	Hauteur initiale
Filtracarb L-SB	1,5 à 2,5 mm	11,3 m ³	1,5 m

Volume total filtré (13semaines)	Débit moyen* journalier (moyenne 13sem)	Débit moyen * journalier min	Débit moyen* journalier max	Temps de marche par jour	Temps de contact es-timé
10 161m ³	121 m³/j	96 m³/j	141 m³/j	24 h	82 min

^{*} débit en sortie d'usine sur la mise en distribution

Déroulement du test:

Le tableau suivant récapitule les évènements et interventions intervenus sur le filtre ou l'usine pendant la durée du suivi (pour plus de détail se référer à la fiche de prélèvement en annexe) :

Recharge :	Aucune recharge n'a été faite durant la période du suivi.
Lavage :	Un lavage du filtre (eau + air) a été fait tous les mois.
Phasage :	Aucune modification de process, de volume de filtration ou de méthodologie de prélèvement n'a été faite pendant la durée du suivi.
Evènement particulier significatif :	Aucun évènement significatif durant la période de suivi.

Points de prélèvement

Eau brute : Robinet de prélèvement sur arrivée d'eau brute

Eau traitée : Robinet de prélèvement sur mise en distribution sortie réservoir de stockage

⇒ Résultats

Exploitation

La station construite en 2009 a été dimensionnée dès sont origine pour du calcaire terrestre de type Filtracarb.

Lavage: Les équipements nécessaire au bon lavage du filtre sont en installé sur la station.

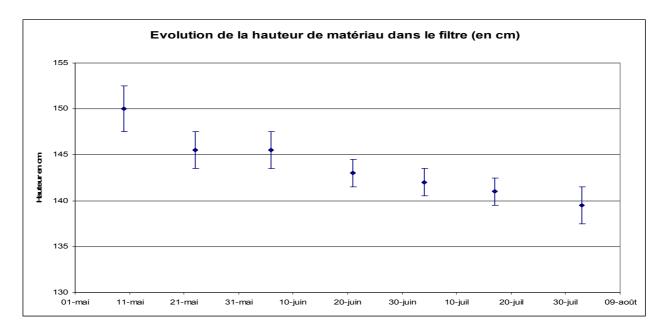
Qualité

Le tableau ci-dessous récapitule les résultats d'analyse du suivi qualité :

SAINTE FORTUNADE		Eau brute			Eau traitée			
Paramètres	Unité	min	moy	max	min	moy	max	
рН	unités pH	6.3	6.6	7.0	7.9	8.1	8.3	
Titre hydrotimétrique ou dureté totale	F	1.7	1.7	1.8	9.5	10.5	11.0	
Alcalinité totale (TAC)	F	0.5	2.1	2.9	10.4	10.9	12.1	
Conductivité corrigée à 25℃	μS/cm	61	68	82	209	229	254	
Chlorures	mg Cl/l	3.8	4.1	4.3	3.8	4.1	4.4	
Potassium	mg K/l	0.5	0.6	0.7	0.6	0.7	1.0	
Sodium	mg Na/l	4.8	5.2	5.5	5.0	5.1	5.2	
Sulfates	mg SO4/I	1.8	2.0	2.5	1.9	2.0	2.1	
Nitrates	mg NO3/I	1.7	2.0	2.2	1.7	2.0	2.3	
Calcium (calcul TH)	mg Ca/l	1.9	4.1	4.6	36.0	39.3	41.0	
Magnésium (calcul TH)	mg Mg/l	1.5	1.6	1.8	1.5	1.8	1.9	

Equilibre calco-carbonique : Le pH et la température sur site ont été mesurés à chaque prélèvement. Le tableau suivant présente les résultats du calcul de l'équilibre calco-carbonique, basé sur les mesures de terrain et sur les résultats d'analyses laboratoire.

SAINTE FORTUNADE		Eau brute			Eau traitée			
Paramètres	min	min moy max			moy max			
pH terrain (1)	6.00	6.25	6.52	7.25	7.33	7.40		
pH équilibre (2)	8.05	9.46	9.95	8.04	8.07	8.11		
ΔpH (2)-(1)	1.95	3.22	3.93	0.64	0.74	0.83		
Caractère	Agressif	Agressif	Agressif	Agressif	Agressif	Agressif		
CO ₂ agressif (mg/l)	13.64	31.13	48.53	6.42	8.25	9.94		


Commentaires:

- Les eaux brutes sont riches en CO₂ agressif.
- Les eaux en sortie de traitement conservent leur caractère agressif mais proche de l'équilibre. L'équilibre calco-carbonique n'est pas atteint malgré un temps de contact supérieur à une heure. Cependant, les paramètres physico-chimiques en sortie de traitement sont satisfaisants vis-à-vis valeurs de référence qualité (conductivité >200 μS/cm). Le TH et TAC sont supérieurs à 8F).
- L'indice de Larson et l'indice de Leroy calculés pour les eaux traitées montrent que celles-ci sont **non corrosives.**
- La station dispose d'une installation d'injection de CO₂ qui semble inutile au vu des valeurs de conductivité, TH et TAC de l'eau traitée.

<u>Consommation de réactif</u>: Les tableaux ci-dessous présentent l'évolution de la hauteur moyenne de calcaire dans le filtre au cours de l'étude, et la consommation moyenne de calcaire estimée (résultats moyens mesurés et/ou calculés).

Hauteur initiale	Hauteur finale	Delta hauteur	Temps de contact initial	Temps de contact final	
m	m	m	min	min	
1.500	1.395	0.105	83	77	

SAINTE FORTUNADE	Consommation de calcaire en g par m³ d'eau filtrée	Consommation de calcaire en g par g de CO ₂ neutralisé
Filtracarb L-SB	100.8	4.4

Commentaires:

- En 13 semaines de suivi (84 jours), le niveau dans le filtre a baissé d'environ 10 cm.
- Même si le niveau de calcaire n'était pas plan, il a baissé de manière quasi constante et proportionnelle aux différents points du filtre.

⇒ Conclusion

Bien que la conductivité respecte la référence de qualité et que l'eau ne soit pas corrosive, l'eau traitée n'est pas à l'équilibre calco-carbonique. Une neutralisation finale à la soude pourra permettre d'atteindre l'équilibre calco-carbonique.

III.3.5. Saint Fréjoux

□ Données techniques

Identifiant usine :	Saint Fréjoux
Maître d'ouvrage :	Commune de Saint Fréjoux
Origine eau(x) brute(s) :	Une source + un forage (ponctuel)
Filière de traitement :	Neutralisation + : chloration (en place non utilisé : injection de CO ₂)
Nombre et type de filtre :	Un filtre ouvert sans plancher
Dimension filtre(s) :	L=2 / I=1,5 / H=3,3 / S=3m ²
Date de construction :	2010
Date de déroulement des essais :	du 10/05/2012 au 02/08/2012
Produit suivi :	Filtracarb L-SB

⇔ Conditions de test

Produit(s) testé(s):

Matériau	Granulométrie	Volume initial	Hauteur initiale
Filtracarb L-SB	1,5 à 2,5 mm	4,8 m ³	1,60 m 1,78 m

Volume total filtré (13semaines)	Débit moyen* journalier (moyenne 13sem)	Débit moyen * journalier min	Débit moyen* journalier max	Temps de marche par jour	Temps de contact es-timé
8 351m ³	100 m³/j	75 m³/j	120 m³/j	20 h	58 min

^{*} débit en entrée d'usine sur les arrivées d'eaux brutes

Déroulement du test:

Le tableau suivant récapitule les évènements et interventions intervenus sur le filtre ou l'usine pendant la durée du suivi (pour plus de détail se référer à la fiche de prélèvement en annexe) :

Recharge :	Afin de garantir la bonne qualité de l'eau traitée, une recharge d'une palette de calcaire (1 tonne) à été faite le 05/07.
Lavage :	Un lavage à l'eau a été fait mensuellement.
Phasage :	Le suivi s'est déroulé en deux phases : PHASE 1 (du 10/05 au 04/07): volume de calcaire < 5m³ PHASE 2 (du 12/07 au 02/08) : recharge de ~0,76 m³ de calcaire pour obtenir un volume filtrant > 5m³
Evènement particulier significatif :	Aucun évènement significatif durant la période de suivi.

Points de prélèvement

Eau brute : Robinet de vidange au pied de la colonne de dégazage

Eau traitée : Robinet de prélèvement sur mise en distribution sortie réservoir de stockage

⇒ Résultats

Exploitation

La station construite en 2010 a été dimensionnée dès sont origine pour du calcaire terrestre de type Filtracarb.

<u>Lavage</u>: De par sa configuration (filtre sans plancher) l'usine ne dispose pas de système de lavage particulier. Le lavage par simple purge est pour l'instant suffisant.

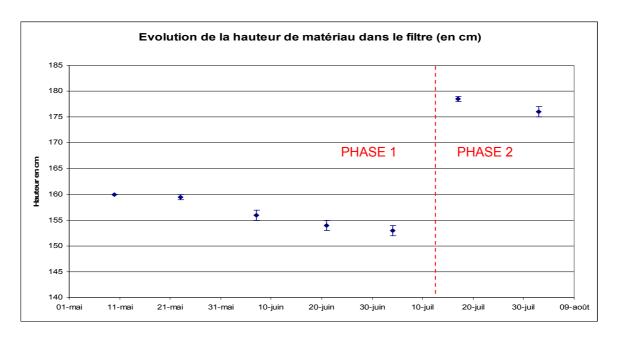
Qualité

Le tableau ci-dessous récapitule les résultats d'analyse du suivi qualité :

SAINT FREJOUX		Eau brute		Eau traitée PHASE 1		Eau traitée PHASE 2				
Paramètres	Unité	min	moy	max	min	moy	max	min	moy	max
рН	unités pH	6.3	6.5	6.7	8.0	8.1	8.3	7.9	8.0	8.1
Titre hydrotimétrique ou dureté totale	F	0.7	0.8	1.0	8.7	8.8	9.0	8.6	8.8	8.9
Alcalinité totale (TAC)	F	0.8	1.1	2.3	8.5	8.7	9.0	8.8	9.4	10.1
Conductivité corrigée à 25℃	μS/cm	32	37	48	174	185	199	184	187	189
Chlorures	mg Cl/l	2.2	2.4	2.6	2.2	2.4	2.5	2.5	2.6	2.7
Potassium	mg K/l	0.6	0.7	0.7	0.6	0.8	1.2	0.6	0.6	0.6
Sodium	mg Na/l	3.0	3.2	3.3	3.0	3.2	3.3	3.1	3.4	3.6
Sulfates	mg SO4/I	0.5	0.6	0.7	0.6	0.6	0.7	0.7	0.8	0.8
Nitrates	mg NO3/I	3.0	3.0	3.0	2.9	3.0	3.0	3.1	3.1	3.1
Calcium (calcul TH)	mg Ca/l	1.6	1.7	2.0	33.0	33.3	34.0	33.0	33.8	34.0
Magnésium (calcul TH)	mg Mg/l	0.8	0.8	0.9	1.0	1.0	1.0	1.0	1.0	1.0

Equilibre calco-carbonique : Le pH et la température sur site ont été mesurés à chaque prélèvement. Le tableau suivant présente les résultats du calcul de l'équilibre calco-carbonique, basé sur les mesures de terrain et sur les résultats d'analyses laboratoire.

SAINT FREJOUX		Eau brute		Eau traitée				
Paramètres	min	moy	max	min	moy	max		
pH terrain (1)	6	6.37	6.7	7.3	7.34	7.4		
pH équilibre (2)	8.70	9.30	9.65	8.27	8.31	8.34		
ΔpH (2)-(1)	2.69	2.93	3.25	0.87	0.97	1.03		
Caractère	Agressif	Agressif	Agressif	Agressif	Agressif	Agressif		
CO ₂ agressif (mg/l)	4.3	9.87	19.6	6.6	7.89	8.8		


Commentaires:

- Les eaux brutes sont très peu minéralisées et agressives.
- Les eaux en sortie de traitement conservent leur caractère **agressif**. L'équilibre calco-carbonique n'est pas atteint malgré un temps de contact moyen de 50 à 60 minutes.
- La conductivité frôle la limite basse de la référence de qualité sans jamais l'atteindre.
- L'indice de Larson et l'indice de Leroy calculés pour les eaux traitées montrent que celles-ci sont **non corrosives.**
- Les résultats des phases 1 et 2 sont similaires. L'augmentation du temps de contact de 10 min n'a pas d'impact sur la qualité de l'eau traitée.

<u>Consommation de réactif</u>: Les tableaux ci-dessous présentent l'évolution de la hauteur moyenne de calcaire dans le filtre au cours de l'étude, et la consommation moyenne de calcaire estimée (résultats moyens mesurés et/ou calculés).

SAINT FREJOUX	Hauteur initiale	Hauteur finale	Delta hauteur	Temps de contact initial	Temps de contact final	
	m	m	m	min	min	
PHASE 1						
(9 semaines)	1.600	1.530	0.070	58	55	
PHASE 2 (4 semaines)	1.780	1.760	0.020	64	63	

SAINT FREJOUX	Consommation de calcaire en g par m³ d'eau filtrée	Consommation de calcaire en g par g de CO ₂ neutralisé
PHASE 1	50.2	22.8
PHASE 2	66.9	46.1

Commentaires:

 Durant la phase 1 (9 semaines), le niveau dans le filtre a baissé d'environ 7 cm, en phase 2 (4 semaines), de 2 cm.

⇒ Conclusion

Bien que l'eau ne soit pas corrosive, l'eau traitée n'est pas à l'équilibre calco-carbonique. Une neutralisation finale à la soude pourra permettre d'atteindre l'équilibre calco-carbonique.

III.4. SYNTHESE

	Hauteur initiale	Hauteur finale	Delta hauteur	Temps de contact initial	Temps de contact final	Quantité matériau consommé	CO ₂ agressif Moyenne EB	CO ₂ agressif Moyenne ET	Quantité matériau consommé
	m	m	m	min	min	g/m³ d'eau filtrée	mg/l	mg/l	g / g de CO ₂ neutralisé
Stations sélectionn	ées pour	essais							
EGLETONS									
Phase 1						15.9	21.5	11.0	1.5
Phase 2	1.210	1.120	0.090	50	47	96.6	66.1 (avec l'injection de CO ₂)	11.6	1.8
OT OWN MAIN									
ST SYLVAIN	1.250	1.175	0.075	89	84	41.3	7.04	5.62	29.1
Akdolit HC	1.600	1.175	0.075	114	108	48.8	7.04	2.42	10.6
Neutralite	1.000	1.525	0.075	114	100	40.0	7.04	2.42	10.6
MEILHARDS									
Algafiltre ca	1.150	1.070	0.080	113	105	40.5	17.1	3.00	2.9
Neutralite	0.750	0.675	0.075	74	67	51.0	17.1	3.38	3.7
LADIGNAC	1.130	1.120	0.010	32	28	82.6	30.5	19.8	7.7
Stations sélectionn	ées pour	suivi							
STE FORTUNADE	1.500	1.395	0.105	83	77	100.8	31.13	8.25	4.4
ST FREJOUX									
Phase 1	1.600	1.530	0.070	58	55	50.2	10.4	8.2	22.8
Phase 2	1.780	1.760	0.020	64	63	66.9	8.5	7.0	46.1
ST PARDOUX	0.200	-	-	2	-				
LAVERT	1.400	1.220	0.180	72	62	98.9	19.9	17.7	41.4
STE FEREOLE	0.900	0.895	0.005	23	23	29.4	23.5	17.7	8.4
	2.200				=•		_3.0		
		_		T-1.1.	-I 4I- Y	en doe rócul	4 - 4 -		

Tableau 5: Tableau de synthèse des résultats

IV - CONCLUSION

Les treize semaines de suivi sur les 10 sites de l'étude ont permis de confirmer que :

- Les filtres à neutralite étant généralement largement dimensionnés en terme de temps de contact, aucune adaptation n'a était nécessaire dans le cadre de l'étude. Ce surdimensionnement des installations de neutralisation semble être général sur tout le bassin Adour-Garonne.
- La mise en place de calcaire terrestre demande un lavage efficace du filtre à l'air et à l'eau. L'absence de plancher constitue un obstacle à l'efficacité du lavage.
- La mise en œuvre de plancher dans les filtres constitue une obligation, de même que la filtration descendante dans les filtres de neutralisation.
- Pour les calcaires synthétiques (Akdolit Hydro-Calcit), un rodage avant remise en route complète est nécessaire. Ce rodage peut être pénalisant si l'installation ne peut être arrêtée plus de quelques jours.
- Quelques soit le produit utilisé (calcaire terrestre ou neutralite) et le temps de contact, l'équilibre calco-carbonique n'est jamais atteint. L'injection de soude s'avère indispensable pour obtenir l'équilibre calco-carbonque
- La filtration sur calcaire terrestre permet néanmoins de rendre les eaux en sortie de traitement non corrosives, et est efficace pour leur reminéralisation (augmentation de la conductivité au-dessus de la limite basse de l'intervalle de référence de qualité.
- Au-delà de 30 minutes de temps de contact, les paramètres physico-chimique de l'eau traitée au calciare terrestre se stabilisent et n'évoluent plus, avec ou sans injection de CO₂ au préalable
- Le lavage du calcaire terrestre est plus délicat que celui de la neutralite :
 - à cause de sa densité plus élevée (soufflante d'air trop peu puissante)
 - à cause de sa propension à produire plus de particules fines.

Ce constat s'applique à tous les calcaires terrestres testés.

V - <u>PARTIE 3 : PRECONISATIONS DE CONCEPTION ET D'EXPLOITATION</u>

La conception des installations de neutralisation ou de reminéralisation et neutralisation nécessite au préalable la réalisation d'analyses spécifiques sur l'eau brute à traiter comprenant l'ensemble des paramètres intervenant dans la détermination de l'équilibre calco-carbonique, à savoir : <u>pH et température mesurés in situ impérativement</u>, calcium, magnésium, sodium, potassium, ammonium, fer, manganèse, TA, TAC, chlorures, sulfates, nitrates, fluorures, Une importance particulière devra être toutefois apportée à l'étalonnage des pH-mètres de terrain pour obtenir une mesure de qualité.

Dans les cas où la neutralisation, ou la reminéralisation et neutralisation, s'effectue sur une eau dont la conductivité est insuffisante au regard de la réglementation, l'obtention d'une conductivité satisfaisante s'effectue par une augmentation de la concentration en calcium (et par voie de conséquence du TH) et en CO_2 (et par voie de conséquence du TAC) de l'eau à traiter par neutralisation au moyen de calcaire terrestre. Lorsque la concentration en CO_2 de l'eau brute est insuffisante pour permettre d'atteindre un minimum de TH et/ou de TAC de 8 $^{\circ}$ pour l'eau traitée par neutralisation seule au moyen de calcaire terrestre, une adjonction de CO_2 doit alors être effectuée en amont du filtre à calcaire.

Chaque usine doit être considérée comme un cas spécifique et la conception doit être envisagée, au cas par cas, sur la base de la qualité de l'eau brute ou du mélange des eaux brutes à traiter.

Les filtres de neutralisation doivent être à filtration descendante et à lavage à contre courant d'air et d'eau.

Les filtres à calcaire terrestres doivent être équipés :

- d'un dispositif d'alimentation permettant une répartition de l'eau sur toute la surface du filtre.
- d'un plancher permettant à la fois une répartition homogène de l'eau sur toute la surface du filtre en fonctionnement normal, et une répartition homogène de l'air et de l'eau sur toute la surface du filtre pendant les opérations de lavage,
- d'un dispositif sous le plancher filtrant permettant d'obtenir une répartition du matelas d'air uniformément sous le plancher du filtre pendant les opérations de lavage,
- d'un dispositif de reprise des eaux de lavage sales permettant une reprise homogène de l'eau de lavage sur toute la surface du filtre.

Un temps de contact maximal dans les filtres de 30 minutes s'avère suffisant. L'augmentation du temps de contact au-delà de cette durée n'a aucun impact sur l'efficacité du calcaire terrestre pour atteindre l'équilibre calco-carbonique. Ce temps de contact doit être calculé en fin de cycle de neutralisation, avant recharge.

La hauteur minimale de matériau en fin de cycle de neutralisation doit être de 1,00 m (<u>hauteur de calcaire servant au calcul du temps de contact</u>). Cette hauteur constitue la hauteur minimale à maintenir en permanence dans les filtres. **En aucun cas, la recharge en calcaire des filtres ne doit intervenir quand le filtre est vide**. La hauteur maximale de matériau neutralisant dans les filtres sera inférieure ou égale à 1,50 m. Une tranche d'eau de 30 à 50 centimètres sera

mise en œuvre au-dessus du niveau maximal de calcaire dans le filtre. Les filtres seront équipés de dispositifs permettant de maintenir un niveau d'eau constant dans les filtres à calcaire. Pour améliorer les conditions d'exploitation et faciliter les recharges en temps et en heure, une signalétique visuelle explicite doit être mise en œuvre à l'intérieur des filtres pour indiquer :

- le niveau de fin de cycle, qui indique qu'il faut procéder à la recharge du filtre,
- le niveau de début de cycle, qui indique que le filtre est rechargé et prêt pour un nouveau cycle de neutralisation.

Après chaque recharge de calcaire, il sera procédé à une désinfection et à un lavage du filtre.

Compte tenu de l'hétérogénéité des calcaires terrestres potentiellement utilisables et de l'incertitude pesant sur la pérennité des ressources actuelles à long terme, les installations doivent être conçues pour s'adapter à un ou plusieurs changements de calcaire terrestre au cours de la durée de vie de l'usine. En conséquence, les filtres à calcaire terrestre et les installations de lavage à l'air et à l'eau doivent être dimensionnés pour des matériaux de densité de 1,6.

Un dispositif de mouillage du calcaire terrestre doit être mis en place pour éviter les envols de poussière lors du rechargement des filtres avec du calcaire terrestre.

Afin d'optimiser le coût d'achat du calcaire terrestre et privilégier l'approvisionnement en vrac, sans pour autant dégrader la qualité du traitement, un silo de stockage doit être mis en œuvre sur les installations de capacité le nécessitant. Cette solution permet ensuite d'effectuer des recharges régulières de calcaire terrestre par petites quantités.

La reminéralisation et/ou la neutralisation au moyen de calcaire terrestre ne permet pas d'atteindre l'équilibre calco-carbonique. L'adjonction d'un réactif complémentaire s'avère donc nécessaire pour respecter la référence de qualité pour ce paramètre. L'injection de soude, par exemple, asservie à une mesure de pH permet de piloter l'injection du réactif et d'atteindre l'équilibre calco-carbonique. Compte tenu de l'hétérogénéité des calcaires terrestres potentiellement utilisables et des fluctuations de la qualité de l'eau brute, le dimensionnement du poste de dosage de soude doit permettre de pouvoir assurer la neutralisation d'environ 1 $\mbox{\ensuremath{\upmu}{$^\circ$}}$ de CO $_2$ agressif.

Une attention particulière doit être apportée à l'étalonnage et à l'entretien des équipements de mesure (pH mètres, conductimètres, etc.) afin que les valeurs mesurées soient fiables, dans la perspective d'un pilotage des injections de réactifs.

Dans la mesure du possible, il conviendra de privilégier un pH d'équilibre de 8,0, sans toutefois dépasser un TH et/ou TAC de 15 °F, pour rester dans des conditions satisfaisantes pour l'efficacité de la désinfection.

VI - ANNEXES:

Annexe I Fiches de prélèvement

Annexe II Résultats d'analyses bruts

Annexe III Représentation graphique de l'évolution des paramètres physico-chimiques

Annexe IV Calcul d'équilibre calco-carbonique

Annexe V Calcul des consommations de réactif

Annexe VI Comptes rendus des interventions de reconversion des sites

ANNEXE I:

FICHES DE PRELEVEMENT

USINE DE: ROSIERS D'EGELTONS

Profondeur relative Releve compteur matériau cm J entre Débit moy Débit moy Pt de EB M EB H ET P1 ET P2 delta EB (m3) débit m3/h Remarques/Observations Sem Date Heure min max prlvt relève m3/j EB m3/j ET EΒ 10:50 Gros débit (35m3/h) et filtre trouble 19 10-mai 157 159 182921 276322 9642 8832 35 (conséquence du débit?) ΕT 11:50 Pellicule de fine (dépôts) au sommet ΕB 10:15 183555 277214 9672 6 254.33 203.33 filtre, lavage le 14/05, d=29m3/h, turbi 20 16-mai 8863 1526 29 ΕT 10:20 dans filtre: 1.2 ΕB 10:10 21 23-mai 156 160 184243 278174 9707 8894 1648 30 7 235.43 188.57 Tjrs pbm de turbidité ΕT 10:15 ΕB 11:25 Production du drain légèrement 22 185075 279344 205.00 31-mai 9749 8934 2002 21 8 250.25 différente ΕT 11:30 EΒ 11:10 23 07-juin 156 161 185813 280323 9784 8970 1717 19 7 245.29 202.86 RAS ΕT 11:15 ΕB 11:00 186465 281318 7 194.29 RAS 24 14-juin 9817 9005 1647 17.5 235.29 ΕT 11:10 EΒ 11:20 7 25 157 162 187154 282378 9854 9040 1749 18.2 249.86 205.71 RAS 21-juin ΕT 11:25 EΒ 11:10 26 187838 283399 9891 9074 1705 7 243.57 202.86 RAS 28-juin 16.8 ΕT 11:15 EΒ 10:50 Mise en route CO2 fin sem26: 0,9 kg/h 27 04-juil 158 164 188442 284298 9925 9102 1503 15 6 250.50 206.67 à 2bar ΕT 11:00 EΒ 11:00 28 12-juil 189180 285432 9963 9142 1872 13 8 234.00 195.00 CO2: 1 kg/h à 2 bar ΕT 11:05 EΒ 11:00 29 17-juil 160 166 189641 286166 10002 9153 1195 13 5 239.00 200.00 CO2: 1 kg/h à 2 bar ΕT 11:05 EΒ 11:10 30 26-juil 190470 287538 10052 9194 2201 11.7 9 244.56 202.22 CO2: 1 kg/h à 2 bar ΕT 11:15 EΒ 10:30 7 31 02-août 164 170 191041 288484 10080 9298 1517 10 216.71 377.14 Bouteilles CO2 vides, plus d'injection ΕT 10:35

Remarques

Pbm asservissement CO2 sur pH: choix d'un réglage manuel par "tâtonnement" En été, amené d'eau brute par un forage en aval de la station, d'où eau distribuée différente d'eau traitée sortie UDI

Eau Adour-Garonne IRH Ingénieur Conseil TOULOUSE REMPLACEMENT DU CALCAIRE MARIN SUR LES UNITES DE NEUTRALISATION D'EAU POTABLE

USINE DE: SAINT SYLVAIN

					ur relative iau cm		Releve	compteur					
Sem	Date	Pt de prlvt	Heure	min	max	EB	ET	tps marche F2	Delta (m3)	J entre relève	Débit moy m3/j EB	Débit moy m3/j ET	Remarques/Observations
		EB	09:10										
19	31-mai	ET cm	09:15			336402	333891						Seul filtre neutra en distribution
		ET ct	09:20										
		EB	09:10										Descion on south consultate to 04/00 consultate to 1500 consultate to
20	7-juin	ET cm	09:15	60	60	337233	334642	868	831	7	118.71	107.29	Remise en route complete le 01/06, source + forage (source 120/130m3/h)
		ET ct	09:20	90	90								(000.00 120.100.11)
		EB	09:10										
21	14-juin	ET cm	09:15			337964	335322	888	731	7	104.43	97.14	RAS
		ET ct	09:20										
		EB	09:10										
22	21-juin	ET cm	09:15	63	63	338756	336047	910	792	7	113.14	103.57	RAS lavage le 18/06
		ET ct	09:20	91	91								
		EB	09:10										
23	28-juin	ET cm	09:15			339598	336805	936	842	7	120.29	108.29	RAS lavage le 25/06
		ET ct	09:15										
		EB	09:10										
24	4-juil.	ET cm	09:15	64	64	340348	337484	961	750	6	125.00	113.17	RAS lavage le 02/07
		ET ct	09:15	92	100								
		EB	09:30										
25	12-juil.	ET cm	09:35			341291	338312	990	943	8	117.88	103.50	RAS lavage le 02/07
		ET ct	09:35										
		EB	09:40										
26	17-juil.	ET cm	09:45	65	65	341927	338854	1010	636	5	127.20	108.40	RAS lavage le 16/07
		ET ct	09:45	93	100								
		EB	09:45										
27	26-juil.	ET cm	09:50			343334	340109	1066	1407	9	156.33	139.44	RAS lavage le 23/07
		ET ct	09:55			1							
		EB	09:10										
28	2-août	ET cm	09:15	67	68	344399	341058	1110	1065	7	152.14	135.57	RAS lavage le 30/07

		ET ct	09:15	94	101				
		EB							
29	9-août	ET cm							
		ET ct							
		EB							
30	23-août	ET cm							
		ET ct							

Remarques
Lavage toutes les semaines
Exploitation: akdolit plus dure a laver car moins de volume de matériau mais plus d'eau

USINE DE: MEILHARDS

Profondeur relative

				matér	iau cm					
Sem	Date	Pt de privt	Heure	min	max	Releve compteur ET	Delta m3	J entre relève	Débit moy m3/j ET	Remarques/Observations
		EB	14:20							4.5.
19	09-mai	ET cm	14:10	169	169	150070				Uniquement source gravitaire en arrivée / lavage des 2 filtres le 7/5/12
		ET ct	14:05	132	132					
		EB	14:20							
20	15-mai	ET cm	14:12			150793	723	6	120.50	Uniquement source gravitaire en arrivée / réparation d'une fuite de 40m3/j le 14/05
		ET ct	14:08							
		EB	14:15							
21	22-mai	ET cm	14:05	169	170	151484	691	7	98.71	Uniquement source gravitaire ; Filtres un peu encrassés
		ET ct	14:00	136	137					
		EB	14:15							0 0
22	30-mai	ET cm	14:20			152247	763	8	95.38	Source + Pompe Grosse consommation journalière: fuite?
		ET ct	14:20							
		EB	14:15							5 (1)
23	06-juin	ET cm	14:10	170	170	152858	611	7	87.29	Prélèvement dans source mais mise en route de la pompe qq min plus tard
		ET ct	14:10	132	139					pompo qq mm pao ana
		EB	14:15							
24	13-juin	ET cm	14:10			153484	626	7	89.43	Source Lavage le 11/06
		ET ct	14:10							2414301011100
		EB	14:30							Source
25	20-juin	ET cm	14:40	170	177	154053	569	7	81.29	Pompes retour château d'eau vers station changées le 14/06
		ET ct	14:40	137	138	1				Filtres très encrassés (dépôt rouge orangé)
		EB	14:15							
26	27-juin	ET cm	14:30			154675	622	7	88.86	Lavage le 27/06, arrivée eau principalement depuis château, augmentation de debit x3 depuis tvx
		ET ct	14:30			1				Silatoda, dagiionadon do dost no dopaio un
		EB	13:10							
27	03-juil	ET cm	13:00	171	179	155264	589	6	98.17	Aucune arrivée d'eau, filtres un peu encrassés (dépots rouille)
		ET ct	13:00	138	139	7				(aspess round)
		EB	13:40							
28	11-juil	ET cm	13:30			156016	752	8	94.00	Aucune arrivée d'eau, filtres un peu encrassés (dépots rouille)

		ET ct	13:30							
		EB	13:10							Gravitaire, pas de conso
29	18-juil	ET cm	13:00	171	180	156636	620	7	88.57	Filtre CT: propre avec petite arrivée d'eau
		ET ct	13:00	139	139					Filtre CM: Très encrassé, pas d'arrviée d'eau
		EB	13:10							Pas d'arrivée, pas de conso / Filtres idem 18
30	25-juil	ET cm	13:00			157348	712	7	101.71	Pompe château d'eau envoient trop d'eau: plus d'arrivée que de conso: niv dans filtre > qoulotte
		ET ct	13:00							arrivée + passage trop plein
		EB	13:10							Grosse arrivée retour château = filtres en trop plein
31	01-août	ET cm	13:00	173	180	158224	876	7	125.14	Lavage le 01/08
		ET ct	13:00	139	141					Remplissage d'une gross piscine de particulier

Remarques

Eau trop entartrante en sortie pour l'exploitant

Interrogation depuis le changement des pompes avec filtre neutra qui se salit beaucoup plus vite
Lors d'un passage avec 0 arrivée et peu de conso, remarque que petit écoulement sur l'arrivée du filtre CT mais pas sur filtre CM (légère différence de GC?)

Exploitation: filtre CT plus dur à laver

Exploitant pense que CT bouche buselures plancher car trop fin

REMPLACEMENT DU CALCAIRE MARIN SUR LES UNITES DE NEUTRALISATION D'EAU POTABLE

USINE DE: SAINT MAMET

Compteur

				Compteur				
Sem	Date	Pt de privt	Heure	Distribué	Delta m3	J entre relève	Débit moy m3/j	Remarques/Observations
		EB	08:20					
19	11-mai	ET cm	08:35	1323012				pH analyseur continue sortie UF: 7,7/ eau mélangée condu: 178, pH:7.8
		ET ct	08:30					71
		EB	07:00					
20	18-mai	ET cm		1326276	3264	7	466.29	pH sortie 7.2
		ET ct						
		EB	07:25					
21	24-mai	ET cm		1329348	3072	6	512.00	pH sortie 7.2
		ET ct						
		EB	07:30					
22	31-mai	ET cm		1332857	3509	7	501.29	pH sortie 7.2
		ET ct						
		EB	09:00					
23	07-juin	ET cm		1336162	3305	7	472.14	pH sortie 7.65
		ET ct						
		EB						
24	14-juin	ET cm						
		ET ct						
		EB	07:00					
25	21-juin	ET cm		1342310	6148	14	439.14	pH sortie 7.7
		ET ct						
		EB	07:00					
26	28-juin	ET cm		1345680	3370	7	481.43	pH sortie 7.84
		ET ct						
		EB						
27	05-juil	ET cm		1349606	3926	7	560.86	pH sortie
		ET ct						
		EB		<u> </u>				
28	13-juil	ET cm		1353712	4106	8	513.25	pH sortie
		ET ct						

		EB					
29	19-juil	ET cm	1356783	3071	6	511.83	pH sortie
		ET ct					
		EB					
30	26-juil	ET cm	1360459	3676	7	525.14	pH sortie
		ET ct					
		EB					
31	02-août	ET cm	1365571	5112	7	730.29	pH sortie
		ET ct					
		EB					
32	09-août	ET cm	1369603	4032	7	576.00	pH sortie
		ET ct					
		EB					
33	16-août	ET cm	1374166	4563	7	651.86	pH sortie
		ET ct					

REMPLACEMENT DU CALCAIRE MARIN SUR LES UNITES DE NEUTRALISATION D'EAU POTABLE

USINE DE: LADIGNAC

					ur relative iau cm	Re	leve compt	eur			
Sem	Date	Pt de privt	Heure	min	max	ET 1	ET 2	Delta (m3)	J entre relève	Débit moy m3/j ET	Remarques/Observations
19	09-mai	EB	12:06	115	115	238541	51091				Lundi 7 mai: TAC et TH entre 15 et 16 °F / volume passé entre mardi 08 à 8h et mercredi 09 à 12h:
13	05-IIIai	ET	12:13	113	113	230341	31031				151+107 m3 (fuite probable)
20	15-mai	EB	11:35			239555	51748	1671	6	278.50	lavage le 14/05 matin
20	15-iiiai	ET	11:40			209000	31740	1071	0	270.50	Fuite?
21	22-mai	EB	11:45	113	115	240805	52486	1988	7	284.00	Fuite?
21	ZZ-IIIdi	ET	11:50	113	113	240003	32400	1900	,	204.00	i uite:
22	30-mai	EB	12:10			242227	53557	2493	8	311.63	Pbm de fuite sur réseau de 200m3/j
22	30-IIIai	ET	12:15			242221	55557	2493	0	311.03	Fbill de luite sui reseau de 200113/j
23	06-juin	EB	11:40	120	121	243466	54519	2201	7	314.43	Lavage le 04/06
23	00-juin	ET	11:45	120	121	243400	54519	2201	,	314.43	Toujours pbm fuite 200m3/j
24	13-juin	EB	11:40			244582	55661	2258	7	322.57	Toujours pbm fuite estimée à 120/130m3/j + pbm
24	13-juili	ET	11:50			244302	33001	2230	,	322.31	communication avec château d'eau
25	20-juin	EB	11:45	119	127	245699	56537	1993	7	284.71	Lavage le 18/06 Toujours pbm fuite estimée à 120/130m3/j + pbm
23	20-juiii	ET	11:50	119	127	243099	30337	1993	,	204.71	communication avec château d'eau vide le 16/06
26	27-juin	EB	11:30			247030	56988	1782	7	254.57	FUITE
20	27-juin	ET	11:35			247030	30900	1702	,	254.57	TOTIL
27	03-juil	EB	11:35	121	126	248198	57336	1516	6	252.67	FUITE
21	03-juli	ET	11:40	121	120	240190	37330	1310	0	232.07	TOTIL
28	11-juil	EB	11:35			249540	57829	1835	8	229.38	lavage le 08/07
20	i i-juli	ET	11:40			249040	37029	1000	0	229.30	lavage le 00/07
29	18-juil	EB	11:35	123	128	250664	58308	1603	7	229.00	Prod à l'arret (pas de demande)
23	10-juli	ET	11:40	123	120	250004	30300	1003	,	229.00	r rod a rairet (pas de demande)
30	25-juil	EB	11:45			252142	58846	2016	7	288.00	RAS
30	20-juli	ET	11:50			202 142	30040	2010	,	200.00	IVAO
31	01-août	EB	11:35	126	131	253691	59395	2098	7	299.71	RAS (lavage le 31/07 ?)
31	o r-aout	ET	11:40	120	151	200001	09090	2030	,	233.71	TV-O (lavage le 31/07 :)

Remarques

Eau trop dure en sortie pour l'exploitant

REMPLACEMENT DU CALCAIRE MARIN SUR LES UNITES DE NEUTRALISATION D'EAU POTABLE

USINE DE: SAINT PARDOUX L'ORTIGIER

					ur relative iau cm		R	eleve comp	teur					
Sem	Date	Pt de prlvt	Heure	min	max	EB F1	EB F2	ET 1	ET 2	Delta (m3)	J entre relève	Débit moy m3/j ET	Débit moy m3/j EB	Remarques/Observations
19	09-mai	EB	10:18	249	275	1208511	749309	1457148	1120150					File 2 arrétée! (pbm d'étanchétité)
		ET	10:31	,										,
20	15-mai	EB	10:00			1211291	751326	1459752	1122227	4797	6	799.50	780.17	pH exploit:7.03 Remise en route de la file 2
20	13-IIIai	ET	10:16			1211291	751520	1409702	1122221	4131	0	799.50	700.17	Arrivée forage supposée
21	22-mai	EB	10:10	270	270	1213819	753906	1462643	1124335	5108	7	729.71	714.14	pH exploit: 7,35
21	ZZ-IIIai	ET	10:15	210	210	1213019	755900	1402043	1124000	3100	,	729.71	7 14.14	Pas d'eau de forage
22	30-mai	EB	10:10			1217135	757200	1466279	1127191	6610	8	826.25	811.50	RAS
22	30-mai	ET	10:15			1217100	737200	1400279	1127191	0010	0	020.23	011.50	IVAO
23	06-juin	EB	10:10	240	270	1220301	760417	1469811	1129955	6383	7	911.86	899.43	RAS
	oo jum	ET	10:15	210	270	1220001	700117	1100011	1120000	0000	,	011.00	000.10	10.0
24	13-juin	EB	10:10			1222988	763077	1472665	1132341	5347	7	763.86	748.57	RAS
	10 juni	ET	10:15			1222000	700077	1112000	1102011	0011	,	700.00	7 10.07	10.0
25	20-juin	EB	10:00	247	267	1225815	765970	1475753	1134853	5720	7	817.14	800.00	RAS
		ET	10:10		20.	1220010				0.20		011111	000.00	
26	27-juin	EB	10:00			1229100	En	1478963	1137338	5695	7	813.57	813.57	Débit metre F2 en panne
	,	ET	10:10			1220100	panne			0000		010.01	0.0.0.	2 objection of 2 on parino
27	03-juil	EB	10:00	227	241	1231849	En	1481967	1139740	5406	6	901.00	901.00	Mise en route traitement physico-chimique
	,	ET	09:50				panne							Forage en route
28	11-juil	EB	10:00			1235032	En	1485477	1142428	6198	8	774.75	774.75	Traitement physico-chimique en panne
		ET	10:10				panne							Dépôt de fer et manganèse
29	18-juil	EB	09:40	259	263	1237816	En	1488552	1144824	5471	7	781.57	781.57	Traitement physico-chimique en panne
	- ,-	ET	09:45				panne							Forage 120m3 en 2 j ?
30	25-juil	EB	10:20			1240952	382	1491924	1147546	6094	7	870.57	870.57	Debimetre F2 remis en route 24/07 Traitement physico-chimique en panne
	- 1-	ET	10:30						- 10					Forage 160 m3/j
31	01-août	EB	10:00			1244434	3894	1495637	1150752	6994	7	999.14	988.43	Traitement physico-chimique en panne
	,	ET	10:10						/-					Forage 253 m3/j

Remarques

Recharge et lavage toutes les semaines

Lors des lavages, eaux très noires (pbm de fer et manganèse)

Lors de l'extraction de la neutralite à la reconversion de l'usine, épaisse couche de neutra noire en fond de filtre

Exploitation: colmatage + important avec filtracarb, soufflante insuffisante

Le débordement est inefficace pour le nettoyage des fines dans le filtracarb car particules trop lourdes qui reste dans le filtre (pas ce pbm avec neutralite dont les fines s'éliminaient facilement par trop plein)

USINE DE: LAVERT (FAVARS)

					eur relative riau cm		F	Releve co	mpteur					
Sem	Date	Pt de prlvt	Heure	min	max	F1	F2	F3	ET	delta (m3)	J entre relève	Débit moy m3/j EB	Débit moy m3/j ET	Remarques/Observations
19	09-mai	EB	15:40	110	116	241478	205803	351820	659783					Niveau d'eau dans le filtre volontairement
	00 11101	ET	15:45			2	200000	00.020	000.00					baissé pour cause pbm étanchéités
20	15-mai	EB	15:30			241707	206383	352878	661814	1867	6	311.17	338.50	F1 et F2 en arrivée
		ET	15:40								-			
21	22-mai	EB	15:20	111	117	242010	207759	353906	664113	2707	7	386.71	328.43	F1 et F2 en arrivée
	-	ET	15:30							_				
22	30-mai	EB	15:30			242238	207759	355688	666938	2010	8	251.25	353.13	F3 en arrivée
		ET	15:35								-			
23	06-juin	EB	15:10	116	118	242474	208366	357045	669329	2200	7	314.29	341.57	F1+2+3 en arrivée
	,	ET	15:15											
24	13-juin	EB	15:10			242842	209332	357641	671421	1930	7	275.71	298.86	F1 en arrivée
		ET	15:15											
25	20-juin	EB	15:40	120	123	243189	210251	358370	673584	1995	7	285.00	309.00	F1+ F2 en arrivée
		ET	15:45											
26	27-juin	EB	15:15			243502	211120	359246	675815	2058	7	294.00	318.71	F1+F2 en arrivée
		ET	15:20											
27	03-juil	EB	15:10	123	126	243779	211869	359985	677724	1765	6	294.17	318.17	F2 + F3 en arrivée
		ET	15:15											
28	11-juil	EB	15:30			244180	212970	360668	680103	2185	8	273.13	297.38	F1+ F2 en arrivée
		ET	15:35 15:10											
29	17-juil	EB ET	15:10	126	128	244481	213778	361215	681892	1656	6	276.00	298.17	F3 en arrivée
\vdash		EB	15:10											
30	25-juil	ET	15:15			244839	214759	362249	684453	2373	8	296.63	320.13	F3 en arrivée
\vdash		EB	15:30											
31	01-août	ET	15:35	130	132	245144	215591	363215	686728	2103	7	300.43	325.00	F1+ F2 en arrivée

Remarques
Vidange hebdomadaire du filtre pour lavage (pas de "vrai" système de lavage)

REMPLACEMENT DU CALCAIRE MARIN SUR LES UNITES DE NEUTRALISATION D'EAU POTABLE

USINE DE: STE FEREOLE

					ur relative iau cm	R	eleve con	npteur]			
Sem	Date	Pt de prlvt	Heure	min	max	EB	ET	delta (m3)	J entre relève	Débit moy m3/j EB	Débit moy m3/j ET	Remarques/Observations
19	09-mai	EB	16:20	105	115	572075	364283					eau dans filtre légèrement trouble dû à forte pluie
13	00 mai	ET	16:25	100	110	012010	004200					(pbm récurant)
20	15-mai	EB	16:05			572955	365160	880	6	146.67	146.17	Vidange le 14/05
20	13-11141	ET	16:10			372933	303100	000	O	140.07	140.17	Vidalige le 14/03
21	22-mai	EB	15:00			573969	366126	1014	7	144.86	138.00	Traitement arrété pour cause de forte pluie: eau
21	ZZ-IIIdi	ET				373303	300120	1014	,	144.00	130.00	trouble
22	30-mai	EB	15:40			575132	367371	1163	8	145.38	155.63	Remise en route le 24/05
22	30-IIIai	ET	15:45			373132	307371	1103	8	145.56	155.05	Coupure de courant le 25/05 au soir <24h
23	06-juin	EB	15:35	107	115	576142	368365	1010	7	144.29	142.00	RAS
23	00-juiii	ET	15:40	107	113	370142	300303	1010	,	144.29	142.00	IVAO
24	13-juin	EB	15:40			577150	369346	1008	7	144.00	140.14	Présence de vers! (nbre <10)
24	13-juili	ET	15:45			377 130	309340	1006	,	144.00	140.14	Fresence de vers: (fibre < 10)
25	20-juin	EB	16:05	108	111	578161	370678	1011	7	144.43	190.29	Présence de vers! (nbre <10)
25	20-juiii	ET	16:10	100	111	3/6101	370076	1011	,	144.43	190.29	Fresence de vers: (fibre < 10)
26	27-juin	EB	15:40			579166	372303	1005	7	143.57	232.14	Présence de vers! (nbre <10)
20	21-juiii	ET	15:45			379100	372303	1003	,	143.57	232.14	Fresence de vers: (hbre > 10)
27	03-juil	EB	15:35	110	118	580021	373565	855	6	142.50	210.33	Présence de vers! (nbre <10)
21	03-juli	ET	15:40	110	110	300021	373303	655	0	142.50	210.55	,
28	11-juil	EB	15:00			581152	374888	1131	8	141.38	165.39	Présence de vers! (nbre <10) Niveau de Ca complétement perturbé (creux dans un
20	i i-juli	ET	15:10			301132	374000	1131	8	141.50	105.56	coin+"bourrelets")
29	17-juil	EB	15:30	111	113	582012	376006	860	6	143.33	196 33	Présence de vers! (nbre <10) Niveau de Ca complétement perturbé (creux dans un
29	i 7 -juli	ET	15:35	1111	113	302012	370000	000	0	143.33	160.33	coin+"bourrelets")
30	25-juil	EB	15:30			583128	377755	1116	8	139.50	219 62	Présence de vers! (nbre <10) Niveau de Ca complétement perturbé (creux dans un
30	20-juli	ET	15:35			303120	377735	1110	0	138.50	210.03	coin+"bourrelets")
31	01-août	EB	15:35	109	112	584056	379283	928	7	132.57	210.20	Présence de vers! (nbre <10) Niveau de Ca complétement perturbé (creux dans un
31	o i-aoui	ET	15:40	109	112	304030	3/9203	920	'	132.57	210.29	coin+"bourrelets")

Remarques

Vidange hebdomadaire du filtre pour lavage (pas de "vrai" système de lavage) Problème récurrant de vers

Ressource sensible aux grosses pluies

Problème de niveau de matériau dans le filtre (perturbation hydraulique?)

USINE DE: SAINT FREJOUX

Profondeur relative Releve compteur

					eur relative riau cm		R	eleve co	mpteur					
Sem	Date	Pt de prlvt	Heure	min	max	EB forage	EB Source	ET 1	ET 2	delta (m3)	J entre relève	Débit moy m3/j EB	Débit moy m3/j ET	Remarques/Observations
19	10-mai	EB	13:55	136	136	853	46195	28909	17985					Recharge du filtre le 24 avril
	To mai	ET	14:05	100	100	000	10100	20000	17000					Roonalge da mae le 21 aviii
20	16-mai	EB	13:30			861	46742	29289	18164	555	6	92.5	93.2	RAS
		ET	13:40								_			12.12
21	23-mai	EB	12:05	136	137	871	47356	29725	18354	624	7	89.1	89.4	RAS
		ET	12:10											-
22	31-mai	EB	14:00			883	48117	30258	18599	773	8	96.6	97.3	RAS
		ET	14:05											
23	07-juin	EB	13:30	139	141	893	48821	30755	18819	714	7	102.0	102.4	RAS
		ET	13:40											
24	14-juin	EB	11:50	 		903	49466	31214	19020	655	7	93.6	94.3	RAS
		ET	11:55											
25	21-juin	EB	13:30	141	143	913	50145	31698	19230	689	7	98.4	99.1	RAS
		ET EB	13:35 13:00											
26	28-juin	ET	13:00	 	valeurs extrapolées	925	50900	32250	19500	767	7	109.6	117.4	RAS
		EB	13:10		on approve									
27	04-juil	ET	13:15	142	144	931	51550	32718	19636	656	6	109.3	100.7	RAS
		EB	13:10											Remplissage filtre sem27/28 (un palette)
28	12-juil	ET	13:15	<u> </u> 		940	52401	33354	19863	860	8	107.5	107.9	Pellicule flottante de fines
		EB	13:10											Vers (<10)
29	17-juil	ET	13:15	117	118	940	53001	33788	20031	600	5	120.0	120.4	Pellicule flottante de fines
		EB	13:10											Pellicule flottante de fines
30	26-juil	ET	13:15	t		944	53933	34458	20303	936	9	104.0	104.7	Forte odeur de chlore sur ET
		EB	11:30	110	101	0.5.5		0.174	22525		_			D. W. J. G. W. J. G
31	02-août	ET	11:35	119	121	955	54444	34714	20563	522	7	74.6	73.7	Pellicule flottante de fines

REMPLACEMENT DU CALCAIRE MARIN SUR LES UNITES DE NEUTRALISATION D'EAU POTABLE

USINE DE: STE FORTUNADE

					ur relative iau cm	Releve co	ompteur]			
Sem	Date	Pt de prlvt	Heure	min	max	debit m3/h	ET	Delta (m3)	J entre relève	Débit moy m3/j ET	Remarques/Observations
19	10-mai	EB	09:33	115	120	7.85	79677				Injection de chlore et CO2 pas en marche, une seule
10	TO IIIdi	ET	09:40	110	120	7.00	73077				source d'EB en ce moment
20	16-mai	EB	09:05			7.74	80399	722	6	120.33	le 15/05: nettoyage filtre + chloration (soupçon
20	TO IIIdi	ET	09:10			7.74	00000	122	O	120.00	bactéries) : condu exploit :219
21	23-mai	EB	09:10	120	124	8.00	81172	773	7	110.43	RAS
21	20-11101	ET	09:15	120	124	0.00	01172	773	,	110.43	IVAO
22	31-mai	EB	10:20			8.63	82125	953	8	119.13	RAS
22	31-IIIai	ET	10:25			0.03	02123	900	0	119.13	NAO
23	06-juin	EB	10:10	120	124	8.45	82971	846	6	141.00	Lavage le 06/06
25	00-juii1	ET	10:15	120	124	0.40	02971	040	0	141.00	Lavage le 00/00
24	14-juin	EB	10:10			9.2	83736	765	8	95.63	RAS
24	1 4 -juii1	ET	10:15			3.2	03730	703	0	95.05	IVAO
25	21-juin	EB	10:10	123	126	8.3	84562	826	7	118.00	RAS
20	Z1 juiii	ET	10:15	120	120	0.0	04002	020	,	110.00	10.0
26	28-juin	EB	10:10			0	85477	915	7	130.71	Filtre légèrement sale
20	20-juiii	ET	10:15			U	03477	313	,	130.71	Tittle legerement sale
27	04-juil	EB	09:50	124	127	0	86231	754	6	125.67	Filtre légèrement sale
21	0 4 -juli	ET	09:55	124	127	U	00231	754	0	123.07	Tittle legerement sale
28	12-juil	EB	10:15			8.4	87177	946	8	118.25	Filtre légèrement sale
20	12 juli	ET	10:20			0.4	07177	040	0	110.20	Tittle legerement sale
29	17-juil	EB	10:35	125	128	7.8	87771	594	5	118.80	Filtre légèrement sale
23	17-juli	ET	10:30	123	120	7.0	0///1	334	5	110.00	Tittle legerement sale
30	26-juil	EB	10:30			7.7	88948	1177	9	130.78	RAS
50	20-juli	ET	10:35			1.1	003-0	11//	9	130.76	IVAO
31	02-août	EB	10:10	126	130	7.6	89838	890	7	127.14	RAS
31	02-a0ut	ET	10:15	120	130	7.0	03030	030	,	127.14	IVAO

ANNEXE II:

RESULTATS D'ANALYSES BRUTS

USINE DE ROSIERS D'EGLETONS

ROSIERS D'EGLETONS EAU BRUTE		10/05/2012	16/05/2012	23/05/2012	31/05/2012	07/06/2012	14/06/2012	21/06/2012	28/06/2012	04/07/2012	12/07/2012	17/07/2012	26/07/2012	02/08/2012
Paramètres	Unité													
pH	unités pH	6.9	6.55	6.3	6.65	6.65	6.4	6.65	6.55	6.15	6.25	6.25	6.1	6.2
Température de mesure du pH	C	23	22	19.5	21.5	22.5	22.5	22.5	22	22.5	22.5	23	23	22.5
Titre hydrotimétrique ou dureté totale	F	1.0	1.0	1.0	1.0	0.6	0.57	0.6	0.66	0.56	0.58	0.75	0.67	0.55
Alcalinité totale (TAC)	F	1.5	0.7	0.9	0.6	0.9	0.6	0.6	0.6	0.7	2.1	1.2	1.5	0.9
Conductivité corrigée à 25℃	μS/cm	45	32	33	32	39	30	46	33	36	33	37	34	38
Température de mesure de la conductivité	J	23	22	19.5	21.5	22 .5	22.5	22.5	22	22.5	22.5	23	23	22.5
Chlorures	mg Cl/l	2.3		2.6			2.7	2.7		2.8		2.8		3.3
Potassium	mg K/l	< 0,5		< 0,5			< 0,5	< 0,5		< 0,5		0.5		< 0,5
Sodium	mg Na/l	3.8		3.6			3.6	3.8		3.6		4		4
Sulfates	mg SO4/I	0.7		0.8			0.7	0.7		0.7		1.6		1
Nitrates	mg NO3/I	3.2		3.4			3.6	3.8		4		4		4
Calcium (calcul TH)	mg Ca/l	1.4	1.6	1.5	1.4	1.8	1.6	1.7	1.9	1.6	1.6	2.2	2	1.5
Magnésium (calcul TH)	mg Mg/l	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5
Somme des anions	méq/l	0.33		0.14			0.15	0.15		0.16		0.38		0.18
Somme des cations	méq/l	0.28	0.11	0.28	0.11	0.12	0.28	0.29	0.13	0.28	0.12	0.34	0.13	0.29

ROSIERS D'EGLETONS EAU TRAITEE		10/05/2012	16/05/2012	23/05/2012	31/05/2012	07/06/2012	14/06/2012	21/06/2012	28/06/2012	04/07/2012	12/07/2012	17/07/2012	26/07/2012	02/08/2012
Paramètres	Unité													
pH	unités pH	8	7.95	7.95	8.05	6.7	7.9	8.15	8.15	7.85	7.8	7.85	7.8	7.4
Température de mesure du pH	${\mathfrak C}$	25	22	20.5	21	22.5	22.5	23	22	22 .5	23	22.5	23	22.5
Titre hydrotimétrique ou dureté totale	°F	4.8	4.9	5.1	5.8	5 .1	5.6	5.2	5.1	9.2	9.9	10.5	11.1	5
Alcalinité totale (TAC)	°F	5	5	5.6	5.4	6	5.5	5.1	5.3	9.1	11.3	10.5	11.4	5.3
Conductivité corrigée à 25℃	μS/cm	129	119	121	117	118	121	128	1 14	208	218	220	230	122
Température de mesure de la conductivité	${\mathcal C}$	25	22	20.5	21	22.5	22.5	23	22	22.5	23	22.5	23	22.5
Chlorures	mg Cl/l	2.7		3			3	3		3		3.1		3.1
Potassium	mg K/l	< 0,5		< 0,5			< 0,5	< 0,5		< 0,5		< 0,5		< 0,5
Sodium	mg Na/l	3.5		4.1			4	4		3.9		4.2		4.4
Sulfates	mg SO4/I	0.8		0.9			0.7	0.7		0.8		0.7		0.8
Nitrates	mg NO3/I	3.4		3.5			3.6	3.8		3.9		3.8		4
Calcium (calcul TH)	mg Ca/l	18	19	20	22	20	21	20	19	35	38	40	43	19
Magnésium (calcul TH)	mg Mg/l	0.5	0.6	0.6	0.6	0.6	0.7	0.6	0.6	0.9	0.9	1	1.1	0.7
Somme des anions	méq/l	0.95		1.16			1.16	1.16		1.96		2.16		1.17
Somme des cations	még/l	1.12	0.98	1.21	1.15	1.02	1.3	1.23	1.01	2.02	1.98	2.28	2.22	1.2

SAINT SYLVAIN

ST SYLVAIN EAU BRUTE		31/05/2012	07/06/2012	14/06/2012	21/06/2012	28/06/2012	04/07/2012	12/07/2012	17/07/2012	26/07/2012	02/08/2012	09/08/2012	23/08/2012
Paramètres	Unité												
рН	unités pH	6.75	6.75	6.45	6.45	6.65	6.45	6.45	6.45	6.35	6.35	6.55	6.35
Température de mesure du pH	J	21	23	22	22	21.5	22.5	23	22.5	23	21.5	23	22.5
Titre hydrotimétrique ou dureté totale	F	1	1.1	0.89	0.92	0 .85	0.92	0.84	0.88	0.86	0.88	0.67	0.65
Alcalinité totale (TAC)	F	1.7	0	1.2	1.1	1	1	2.6	1.2	1.9	1.3	1.2	
Conductivité corrigée à 25℃	μS/cm	41	0.5	40	50	45	49	40	43	43	79	35	32
Température de mesure de la conductivité	J	21	23	22	22	21.5	22 .5	23	22.5	23	21.5	23	22.5
Chlorures	mg Cl/l			3.3	3.3		3.3		3.3		3.7		3.5
Potassium	mg K/I			0.7	0.9		1.3		0.7		1.2		0.7
Sodium	mg Na/I			4.4	4.4		4.8		4.5		4.8		4
Sulfates	mg SO4/I			0.6	0.8		0.6		0.6		0.7		0.6
Nitrates	mg NO3/I			3.1	3.2		3.3		3.2		3.4		2.1
Calcium (calcul TH)	mg Ca/I	2.1	2.7	2.3	2.3	2.1	2.3	1.9	2.1	2	2.2	1.5	1.6
Magnésium (calcul TH)	mg Mg/l	0.9	0.9	0.8	0.9	0.8	0.8	0.9	0.8	0.9	0.8	0.7	0.6
Somme des anions	méq/l			0.35	0.36		0.36		0.36		0.37		0.15
Somme des cations	méq/l	0.18	0.21	0.39	0.4	0.17	0.43	0.17	0.39	0.17	0.41	0.13	0.32

ST SYLVAIN EAU TRAITEE		31/05/2012	07/06/2012	14/06/2012	21/06/2012	28/06/2012	04/07/2012	12/07/2012	17/07/2012	26/07/2012	02/08/2012	09/08/2012	23/08/2012
AKDOLIT HYDRO CALCIT													
Paramètres	Unité												
pH	unités pH	10	7.75	8.2	8.25	8.25	8.2	8.15	8.2	7.9	7.85	8.1	8.25
Température de mesure du pH	ಭ	21	22	22	22.5	21.5	22.5	22.5	22.5	23	22.5	22.5	22.5
Titre hydrotimétrique ou dureté totale	°F	8.1	34	8.5	7.6	8	7 .8	8.3	8.2	8.6	8.4	9.3	8
Alcalinité totale (TAC)	F	8.5	27.9	8.3	7.9	8.1	7.6	9.7	8.7	9.1	8.6	9.3	
Conductivité corrigée à 25℃	μS/cm	310	647	174	175	178	181	182	184	181	185	193	164
Température de mesure de la conductivité	$^{\circ}$	21	22	22	22.5	21.5	22.5	22.5	22.5	23	22.5	22.5	22.5
Chlorures	mg Cl/l			3.3	3.3		3.4		3.4		3.4		3.4
Potassium	mg K/I			0.7	0.8		0.8		0.6		0.7		0.7
Sodium	mg Na/l			4.4	4.6		4.5		4.3		4.6		4.2
Sulfates	mg SO4/I			0.7	8.0		0.8		0.7		0.8		0.7
Nitrates	mg NO3/I			2.6	3.1		2.9		2.7		2.7		2.6
Calcium (calcul TH)	mg Ca/l	30	130	30	27	30	29	31	31	33	32	33	32
Magnésium (calcul TH)	mg Mg/l	1.7	6	2.3	1.8	1.2	1.2	1	0.9	0.9	0.9	3	< 0,5
Somme des anions	méq/l			1.75	1.56		1.56		1.75		1.76		0.15
Somme des cations	méq/l	1.62	6.79	1.91	1.74	1.59	1.77	1.65	1.85	1.71	1.9	1.87	1.8

ST SYLVAIN EAU TRAITEE		31/05/2012	07/06/2012	14/06/2012	21/06/2012	28/06/2012	04/07/2012	12/07/2012	17/07/2012	26/07/2012	02/08/2012	09/08/2012	23/08/2012
<u>NEUTRALITE</u>													
Paramètres	Unité												
pH	unités pH	8.6	7.8	8.15	8.25	8.3	8.15	8.25	8.15	8.05	8.1	7.85	8.2
Température de mesure du pH	Ç	21.5	23	22.5	22	21.5	22.5	22.5	23	23	22	22.5	22.5
Titre hydrotimétrique ou dureté totale	F	9.7	9.5	9.9	9.4	9	9.3	9.3	9.4	9.5	8.2	8.7	8.8
Alcalinité totale (TAC)	F	9.5	9	9.7	9.6	9.2	9.7	10.8	9.5	9.9	9.3	9	
Conductivité corrigée à 25℃	μS/cm	196	201	197	197	202	211	208	197	200	230	183	174
Température de mesure de la conductivité	$^{\circ}$	21.5	23	22.5	22	21.5	22.5	22.5	23	23	22	22.5	22.5
Chlorures	mg Cl/l			3.4	3.3		3.5		3.4		3.8		3.4
Potassium	mg K/I			0.7	0.9		0.7		0.8		1.1		0.8
Sodium	mg Na/I			4.5	4.6		4.5		4.4		4.5		4.4
Sulfates	mg SO4/I			1.2	1.1		1.3		1.1		1.2		1.2
Nitrates	mg NO3/I			2.7	3.2		2.9		2.7		2.8		2.6
Calcium (calcul TH)	mg Ca/l	33	32	33	32	30	31	31	32	32	28	33	30
Magnésium (calcul TH)	mg Mg/l	3.5	3.5	3.8	3.6	3.4	3.6	3.5	3.5	3.5	3.1	0.9	3
Somme des anions	méq/l			1.96	1.97		1.97		1.96		1.98		0.16
Somme des cations	méq/l	1.93	1.91	2.19	2.11	1.8	2.07	1.85	2.08	1.89	1.87	1.73	1.96

MEILHARDS

MEILHARDS EAU BRUTE		09/05/2012	15/05/2012	22/05/2012	30/05/2012	06/06/2012	13/06/2012	20/06/2012	27/06/2012	03/07/2012	11/07/2012	18/07/2012	25/07/2012	01/08/2012
Paramètres	Unité													
pH	unités pH	6.6	6.75	6.45	6.6	6.75	6	6.55	6.7	6.6	6.55	6.4	6.75	6.4
Température de mesure du pH	S	21	22.5	22.5	22	22.5	20	22	21.5	22.5	25	22.5	21.5	23
Titre hydrotimétrique ou dureté totale	F	1.7	1.8	1.7	1.5	1.9	1.9	1.9	2	2.2	2.3	1.9	2.1	2
Alcalinité totale (TAC)	F	1.6	1.5	1.3	1.2	1.5	1.6	1.4	1.7	1.6	1.4	1.5	1.7	1.2
Conductivité corrigée à 25℃	μS/cm	70	77	76	65	76	75	73	78	89	102	79	81	73
Température de mesure de la conductivité	S	21	22.5	22.5	22	22 .5	20	22	21.5	22.5	25	22.5	21.5	23
Chlorures	mg Cl/l	5.7		5.2		6		6.1		6.1		5.6		5.5
Potassium	mg K/I	< 0,5		0.7		0.8		0.7		1.5		1.1		1.4
Sodium	mg Na/l	6.3		5.6		5.9		6		6		6		5.9
Sulfates	mg SO4/I	2.8		2.5		2.3		2.3		2.3		2.1		1.7
Nitrates	mg NO3/I	10		8.5		10		10		13		12		13
Calcium (calcul TH)	mg Ca/l	4.3	4.8	4.5	4	5	5.2	5	5.2	5.8	5.8	4.8	5.2	4.8
Magnésium (calcul TH)	mg Mg/l	1.5	1.5	1.5	1.3	1.6	1.6	1.6	1.8	1.8	2.1	1.7	1.8	1.8
Somme des anions	méq/l	0.58		0.54		0.58		0.58		0.63		0.59		0.6
Somme des cations	méq/l	0.62	0.36	0.61	0.31	0.66	0.39	0.67	0.41	0.74	0.46	0.67	0.41	0.68

MEILHARDS EAU TRAITEE		09/05/2012	15/05/2012	22/05/2012	30/05/2012	06/06/2012	13/06/2012	20/06/2012	27/06/2012	03/07/2012	11/07/2012	18/07/2012	25/07/2012	01/08/2012
<u>ALGAFILTRE</u>														
Paramètres	Unité													
рН	unités pH	8.25	8.15	8.2	8.05	8.2	8	8.2	8	8.15	8.05	8	8.25	8.05
Température de mesure du pH	$^{\circ}$	21	23	22.5	21.5	22.5	20.5	21.5	21.5	22	24.5	1	22	22.5
Titre hydrotimétrique ou dureté totale	F	7.6	8.1	9.0	8.2	12.1	9.2	8.9	12.1	12.2	12.4	11.7	12	10.9
Alcalinité totale (TAC)	F	7.1	8.2	8.6	7.4	7.9	8.4	8.1	11.7	11.1	11.2	11.3	11.1	10.1
Conductivité corrigée à 25℃	μS/cm	179	198	217	182	495	209	197	251	269	280	264	260	242
Température de mesure de la conductivité	C	21	23	22.5	21.5	22	20.5	21.5	21.5	22	24.5	1	22	22.5
Chlorures	mg CI/I	5.6		5.2		97		6		5.4		5.2		5.4
Potassium	mg K/l	1		0.7		3.2		0.7		1.4		1.2		1.3
Sodium	mg Na/l	5.8		5.7		48		6.1		5.8		5.9		5.8
Sulfates	mg SO4/I	1.8		2.6		2.3		2.4		2.4		2.3		1.9
Nitrates	mg NO3/I	11		8.6		10		10		13		12		13
Calcium (calcul TH)	mg Ca/l	28	30	33	30	45	34	33	45	45	46	43	45	40
Magnésium (calcul TH)	mg Mg/l	1.5	1.7	1.7	1.7	2	1.7	1.8	2.2	2.2	2	2.1	2.1	1.9
Somme des anions	méq/l	1.77		1.94		4.34		1.99		2.62		2.59		2.4
Somme des cations	méq/l	1.8	1.63	2.06	1.63	4.57	1.83	2.07	2.42	2.72	2.47	2.62	2.4	2.46

MEILHARDS EAU TRAITEE		09/05/2012	15/05/2012	22/05/2012	30/05/2012	06/06/2012	13/06/2012	20/06/2012	27/06/2012	03/07/2012	11/07/2012	18/07/2012	25/07/2012	01/08/2012
<u>NEUTRALITE</u>														
Paramètres	Unité													
pH	unités pH	8.3	8.25	8.35	8.3	8.35	8.2	8.35	8.15	8.15	8.05	8	8.25	8.05
Température de mesure du pH	$^{\circ}$	21	22	22.5	22	22.5	20.5	21.5	21.5	22	23.5	22.5	22	22.5
Titre hydrotimétrique ou dureté totale	F	7.9	8.1	8.8	8	8.5	9.2	9.2	11.8	12.4	12.5	11.7	11.9	10.9
Alcalinité totale (TAC)	F	7.4	7.8	8.4	7.5	8.3	8.3	8.2	11.1	11.5	11.6	11.2	11.3	10
Conductivité corrigée à 25℃	μS/cm	186	198	215	182	199	207	202	247	271	285	266	263	241
Température de mesure de la conductivité	$^{\circ}$	21	22	22.5	22	22.5	20.5	21.5	21.5	22	23.5	22.5	22	22.5
Chlorures	mg Cl/l	5.6		5.3		6		6		6.2		5.2		5.5
Potassium	mg K/l	1		0.8		1		0.9		1.4		1.2		1.4
Sodium	mg Na/l	5.9		5.9		6		6.3		6.2		6.2		6.1
Sulfates	mg SO4/I	2.1		2.7		2.4		2.9		3.1		2.8		2.3
Nitrates	mg NO3/I	11		9.1		10		10		13		12		13
Calcium (calcul TH)	mg Ca/l	26	27	29	27	28	30	30	40	42	42	39	40	37
Magnésium (calcul TH)	mg Mg/l	3.1	3.4	3.7	3.4	3.7	3.8	3.9	4.4	4.8	4.7	4.6	4.7	3.9
Somme des anions	méq/l	1.78		1.95		1.98		2		2.65		2.6		2.21
Somme des cations	méq/l	1.86	1.61	2.04	1.6	1.99	1.83	2.13	2.35	2.78	2.49	2.63	2.39	2.48

SAINT MAMET LA SALVETAT

ST MAMET EAU BRUTE		11/05/2012	18/05/2012	24/05/2012	31/05/2012	07/06/2012	21/06/2012	28/06/2012	05/07/2012	13/07/2012	19/17/2012	26/07/2012	02/08/2012	09/08/2012	16/08/2012
Paramètres	Unité														
pH	unités pH	6.8	6.8	7.05	7.15	7.25	7.45	7.05	7.1	7	6.95	7.2	7.6	7.3	7.3
Température de mesure du pH	C	19.5	19	21	21.5	21	22	18.5	21	22	21	22	22	22.5	22.5
Titre hydrotimétrique ou dureté totale	F	1	1.5	1.2	1.6	1.4	1.4	1.5	1.5	1.4	1.4	1.5	1.5	1.5	1.6
Alcalinité totale (TAC)	°F	1.2	1.3	1.1		1		1.3	1.1	1.2	<2	1.2	1.6	1.2	1.1
Conductivité corrigée à 25℃	μS/cm	68	51	94	51	203	54	49	61	62	53	56	58	54	53
Température de mesure de la conductivité	C	23	22.5	22	21.5	21	22	22	22.5	22	21.3	22	22	22.5	22.5
Chlorures	mg Cl/l	3.7			4.6			4.5		4.9		4.8		5	
Potassium	mg K/I	0.6			0.7			0.8		0.8		0.9		1.1	
Sodium	mg Na/l	3.5			3			3.5		3.6		3.9		3.8	
Sulfates	mg SO4/I	1.2						0.7		0.7		0.7		0.8	
Nitrates	mg NO3/I	3.4			4.5			5		5.3		6		6.2	
Calcium (calcul TH)	mg Ca/l		3.1	2.5	3.9		2.8	3.1	3	2.7		2.8	3	3.2	3.2
Magnésium (calcul TH)	mg Mg/l	1.5	1.7	1.5	1.5		1.7	1.8	1.9	1.8		1.9	1.9	1.8	1.9
Somme des anions	méq/l	0.38			0.22			0.42		0.44		0.45		0.46	
Somme des cations	méq/l	0.29	0.3	0.25	0.47		0.27	0.48	0.31	0.46		0.49	0.31	0.5	0.31

ST MAMET EAU TRAITEE		11/05/2012	18/05/2012	24/05/2012	31/05/2012	07/06/2012	21/06/2012	28/06/2012	05/07/2012	13/07/2012	19/17/2012	26/07/2012	02/08/2012	09/08/2012	16/08/2012
AKDOLIT KARBONAT C															
Paramètres	Unité							•							
pH	unités pH	8.4	8.2	8.1	8.2	7.9	8	8.05	6.95	8.05	7.85	7.95	7.55	8.05	8
Température de mesure du pH	C	23	22.5	21	21.5	21	22	22	23	22.5	21	22	22	23	23
Titre hydrotimétrique ou dureté totale	°F	3.2	7.1	7.6	5.9	4 .4	11.6	9.3	< 0,50	9.2	8.8	10.4	11	9.5	4.2
Alcalinité totale (TAC)	°F	3.4	6.4	7.6		3.8		8.7	< 0,5	8.9	8.3	9.7	10.1	8.9	4.1
Conductivité corrigée à 25℃	μS/cm	104	159	218	130	132	234	188	29	211	197	226	235	199	109
Température de mesure de la conductivité	C	23	22.5	22	21.5	21	22	22	23	22	21.3	22	22	23	23
Chlorures	mg Cl/l	4			4.6			4.5		5		6.4		7	
Potassium	mg K/I	< 0,5			0.6			0.8		0.9		0.9		1	
Sodium	mg Na/l	3.6			2.9			3.5		3.8		3.9		3.8	
Sulfates	mg SO4/I	1.3						0.7		0.7		0.7		0.8	
Nitrates	mg NO3/I	3.4			4.5			5		5.3		6		6.2	
Calcium (calcul TH)	mg Ca/l	12	26	28	22		44	34	1	33		38	41	35	14
Magnésium (calcul TH)	mg Mg/l	0.6	1.3	1.4	1.2		1.7	1.9	< 0,5	1.9		1.9	2	1.6	1.5
Somme des anions	méq/l	0.79			0.22			1.82		1.84		2.09		1.91	
Somme des cations	méq/l	0.81	1.41	1.53	1.33		2.32	2.03	0.06	2.02		2.26	2.2	2.09	0.84

ST MAMET EAU TRAITEE		11/05/2012	18/05/2012	24/05/2012	31/05/2012	07/06/2012	21/06/2012	28/06/2012	05/07/2012	13/07/2012	19/17/2012	26/07/2012	02/08/2012	09/08/2012	16/08/2012
NEUTRALITE															
Paramètres	Unité							•							
pH	unités pH	8.25	8.2	7.85	8.15	8.1	7.65	8.15	8.25	8	7.9	8	7.75	8.1	8.2
Température de mesure du pH	$^{\circ}$	23	22.5	21.5	21.5	21.5	22.5	22	22.5	23	21	22	21.5	22.5	22.5
Titre hydrotimétrique ou dureté totale	°F	8.2	10.7	8.8	15.7	8.9	3.3	11.5	3.5	10.2	9.2	10.9	10	8.9	5.8
Alcalinité totale (TAC)	°F	7.9	9.6	8		8.2		9.7	2.6	9.3	8.7	10.1	10.1	8.3	5.3
Conductivité corrigée à 25℃	μS/cm	196	230	245	325	408	95	247	167	232	208	235	259	185	155
Température de mesure de la conductivité	C	23	22.5	22	21.5	21 .5	22.5	22	22.5	22	21.4	22	21.5	22.5	22.5
Chlorures	mg CI/I	6.3			30			13		8.9		7.1		6.3	
Potassium	mg K/I	0.6			0.7			0.8		0.9		0.8		1.1	
Sodium	mg Na/l	3.8			3.4			3.8		4.1		3.9		3.9	
Sulfates	mg SO4/I	1.7						1.3		1.2		0.8		1.6	
Nitrates	mg NO3/I	3.4			4.7			5.2		5.4		6		4.3	
Calcium (calcul TH)	mg Ca/l	28	35	29	53		9.4	39	10	34		40	36	29	19
Magnésium (calcul TH)	mg Mg/l	3.2	4.5	3.6	6		2.4	4.5	2.3	4.3		2.4	2.2	4.1	2.7
Somme des anions	méq/l	1.67			0.96			2.27		2.16		2.31		1.88	
Somme des cations	méq/l	1.82	2.14	1.75	3.3		0.67	2.49	0.7	2.24		2.37	2	1.98	1.17

LADIGNAC LE LONG

LADIGNAC EAU BRUTE		09/05/2012	15/05/2012	22/05/2012	30/05/2012	06/06/2012	13/06/2012	20/06/2012	27/06/2012	03/07/2012	11/07/2012	18/07/2012	25/07/2012	01/08/2012
Paramètres	Unité													
рН	unités pH	6.65	6.7	6.65	6.6	6.7	6.3	6.55	6.65	6.55	6.5	6.4	6.8	6.35
Température de mesure du pH	ථ	21	23	23	22	22.5	20	22	22	22.5	24	22.5	22	23
Titre hydrotimétrique ou dureté totale	F	2.8	2.8	2.8	2.8	2.9	2.8	2.8	2.8	2.9	3	2.8	2.9	3
Alcalinité totale (TAC)	F	2.1	2.3	2.4	2.4	2.4	2.5	2.2	2.3	2.2	2.3	2.5	2.3	2.4
Conductivité corrigée à 25℃	μS/cm	101	110	109	98	106	105	100	100	112	125	117	103	101
Température de mesure de la conductivité	ථ	21	23	23	22	22.5	20	22	22	22.5	24	22.5	22	23
Calcium	mg Ca/l	6.5												
Chlorures	mg Cl/l	7.5		6.8		7		7.2		7.7		7.4		6.9
Magnésium	mg Mg/l	2.8												
Potassium	mg K/I	1.8		1.6		1.7		2		2		1.6		1.9
Sodium	mg Na/l	7.4		7.2		7.4		7.3		7.6		7.6		7.3
Sulfates	mg SO4/I	3.6		3.8		3.1		3.3		3.3		3.3		3.2
Nitrates	mg NO3/I	12		15		12		12		12		12		11
Calcium (calcul TH)	mg Ca/l		6.7	6.5	6.7	7	6.8	6.8	6.8	6.9	6.9	6.5	6.8	7.4
Magnésium (calcul TH)	mg Mg/l		2.8	2.7	2.7	2.7	2.8	2.8	2.8	3	3	2.8	2.8	2.8
Somme des anions	méq/l	0.88		0.91		0.85		0.86		0.88		0.87		0.84
Somme des cations	méq/l	0.92	0.56	0.91	0.56	0.57	0.57	0.94	0.57	0.97	0.59	0.92	0.57	0.97

LADIGNAC EAU TRAITEE		09/05/2012	15/05/2012	22/05/2012	30/05/2012	06/06/2012	13/06/2012	20/06/2012	27/06/2012	03/07/2012	11/07/2012	18/07/2012	25/07/2012	01/08/2012
Paramètres	Unité													
pH	unités pH	8	7.9	7.9	7.9	7.95	7.3	7.85	7.85	7.75	7.85	7.75	8	7.3
Température de mesure du pH	C	21	21	23	22	23	20.5	21.5	22	22	24	22.5	22	22.5
Titre hydrotimétrique ou dureté totale	F	14.5	14.8	14.2	14.4	14.4	14.4	14.2	14.4	14.3	14.4	13.9	14.3	8
Alcalinité totale (TAC)	F	13.8	14.5	13.7	13.5	13.8	13.5	13.2	13.4	13.3	13.4	13.7	13.7	7.4
Conductivité corrigée à 25℃	μS/cm	312	334	327	294	323	311	301	296	309	325	316	315	201
Température de mesure de la conductivité	C	21	21	23	22	23	20.5	21.5	22	22	24	22.5	22	22.5
Calcium	mg Ca/l	52												
Chlorures	mg CI/I	7.6		7		7.4		7.4		7.5		7.4		7.3
Magnésium	mg Mg/l	3.3												
Potassium	mg K/l	1.8		1.6		1.8		1.7		1.6		1.6		1.6
Sodium	mg Na/l	7.6		7.3		7.5		7.4		7.5		7.7		7.6
Sulfates	mg SO4/I	3.6		3.2		3.3		3.4		3.3		3.2		3.2
Nitrates	mg NO3/I	12		12		12		12		12		12		11
Calcium (calcul TH)	mg Ca/l		53	52	52	52	52	51	52	52	52	50	52	27
Magnésium (calcul TH)	mg Mg/l		3.4	3.3	3.4	3.3	3.4	3.4	3.4	3.4	3.3	3.3	3.4	3
Somme des anions	méq/l	3.08		3.05		3.07		3.07		3.08		3.06		1.85
Somme des cations	méq/l	3.27	2.95	3.2	2.87	2.87	2.87	3.21	2.88	3.23	2.88	3.15	2.86	1.98

SAINT PARDOUX L'ORTIGIER

ST PARDOUX EAU BRUTE		09/05/2012	15/05/2012	22/05/2012	30/05/2012	06/06/2012	13/06/2012	20/06/2012	27/06/2012	03/07/2012	11/07/2012	18/07/2012	25/07/2012	01/08/2012
Paramètres	Unité													
pH	unités pH	6.9	6.85	6.8	6.8	7.05	6.4	6.6	6.9	6.9	6.8	6.65	7	6.8
Température de mesure du pH	${\mathfrak C}$	21	22	22.5	22	23.5	19	21	21.5	22	24	22.5	22	22.5
Titre hydrotimétrique ou dureté totale	F	3.3	3.4	3.4	3.5	3.7	3.3	3.5	3.6	3.7	3.7	3.6	3.6	4
Alcalinité totale (TAC)	٩F	2.2	2.5	2.5	2.4	2.4	2.2	2.3	2.6	2.8	2.5	2.7	2.5	2.9
Conductivité corrigée à 25℃	μS/cm	118	126	129	117	127	122	117	1 19	126	139	126	125	131
Température de mesure de la conductivité	${\mathfrak C}$	21	22	22.5	22	23.5	21.5	21	21.5	22	24	22.5	22	22.5
Calcium	mg Ca/l	7.7												
Chlorures	mg Cl/l	9.9		9.3		9.7		9.8		9.9		9.7		10
Magnésium	mg Mg/l	3.3												
Potassium	mg K/l	1.4		1.3		1.4		1.3		1.5		1.3		1.3
Sodium	mg Na/I	8.4		8.2		8.4		8.4		8.8		8.6		8.6
Sulfates	mg SO4/I	4.5		4.5		4.3		4.6		4.7		4.4		4.8
Nitrates	mg NO3/I	15		14		15		15		15		14		14
Calcium (calcul TH)	mg Ca/l		8.2	8	8.2	8.5	7.9	8.4	8.5	8.6	9.4	8.2	8.3	9.3
Magnésium (calcul TH)	mg Mg/l		3.4	3.4	3.5	3.7	3.3	3.5	3.6	3.7	3.4	3.7	3.6	4
Somme des anions	méq/l	1.01		0.99		1		1.01		1.01		0.99		1
Somme des cations	méq/l	1.05	0.68	1.07	0.7	0.73	0.67	1.1	0.72	1.16	0.74	1.12	0.71	1.21

ST PARDOUX EAU TRAITEE		09/05/2012	15/05/2012	22/05/2012	30/05/2012	06/06/2012	13/06/2012	20/06/2012	27/06/2012	03/07/2012	11/07/2012	18/07/2012	25/07/2012	01/08/2012
Paramètres	Unité													
pH	unités pH	7.5	7.6	7.65	7.6	7.75	7.15	7.65	7.8	7.8	7.4	7.65	7.85	7.7
Température de mesure du pH	C	21	23	22.5	21.5	23	20.5	21.5	21.5	22.5	24	22.5	22	22.5
Titre hydrotimétrique ou dureté totale	F	7.6	8.6	8.7	9.2	9.6	9.4	9.5	9.4	9.8	9.2	9.4	9.3	9.5
Alcalinité totale (TAC)	F	6.5	7.8	7.8	8.1	8.5	8	8.3	8	8.5	7.8	8.5	8.3	8.4
Conductivité corrigée à 25℃	μS/cm	200	225	232	224	241	230	226	2 22	239	241	237	232	233
Température de mesure de la conductivité	C	21	23	22.5	21.5	23	20.5	21.5	21.5	22.5	24	22.5	22	22.5
Calcium	mg Ca/l	25												
Chlorures	mg Cl/l	9.9		9.3		9.8		9.8		12		9.9		10
Magnésium	mg Mg/l	3.4												
Potassium	mg K/l	1.4		1.3		1.4		1.3		1.4		1.2		1.3
Sodium	mg Na/l	8.4		8.2		8.6		8.4		9.3		9		9.1
Sulfates	mg SO4/I	4.3		4.1		4.5		4.5		5.6		4.9		5.8
Nitrates	mg NO3/I	15		14		15		15		13		13		12
Calcium (calcul TH)	mg Ca/l		29	29	30	32	32	32	31	31	31	30	30	29
Magnésium (calcul TH)	mg Mg/l		3.6	3.4	3.9	3.9	3.6	3.6	4.1	4.9	3.5	4.6	4.3	5.5
Somme des anions	méq/l	1.81		1.98		2.21		2.22		2.26		2.19		2.2
Somme des cations	méq/l	1.92	1.72	2.13	1.84	1.91	1.88	2.3	1.87	2.4	1.83	2.29	1.86	2.32

LAVERT

LAVERT EAU BRUTE		09/05/2012	15/05/2012	22/05/2012	30/05/2012	06/06/2012	13/06/2012	20/06/2012	27/06/2012	03/07/2012	11/07/2012	17/07/2012	25/07/2012	01/08/2012
Paramètres	Unité													
pH	unités pH	6.75	6.95	6.6	6.8	7	6.25	6.5	6.65	6.75	6.6	6.6	7	6.6
Température de mesure du pH	${\mathfrak C}$	21	23	22.5	22	23	20	21	22	22.5	24	22.5	22	22.5
Titre hydrotimétrique ou dureté totale	F	3.1	3.1	3.1	3.2	14.4	3.3	3.2	3.1	3.4	3.2	3.3	3.3	3.1
Alcalinité totale (TAC)	F	2.4	2.6	2.4	2.7	2.6	2.6	2.3	2.3	2.8	2.3	2.8	2.5	2.4
Conductivité corrigée à 25℃	μS/cm	108	116	118	104	114	114	107	1 05	113	129	109	112	105
Température de mesure de la conductivité	${\mathfrak C}$	21	23	22.5	22	23	20	21	22	22.5	24	22.5	22	22.5
Calcium	mg Ca/l	7.8												
Chlorures	mg CI/I	7.6		7.1		7.6		7.5		8.1		8		7.4
Magnésium	mg Mg/l	2.8												
Potassium	mg K/l	0.9		0.8		0.9		0.8		0.8		0.8		8.0
Sodium	mg Na/l	7.5		7.6		7.5		7.7		7.6		7.8		7.6
Sulfates	mg SO4/I	4		4.3		3.6		4.5		3.8		3.2		4.2
Nitrates	mg NO3/I	12		12		13		13		13		12		12
Calcium (calcul TH)	mg Ca/l		8.3	8.3	8	52	8.2	8.5	8.3	8.7	8.5	8.3	8.2	8.3
Magnésium (calcul TH)	mg Mg/l		2.6	2.6	3	3.3	3.1	2.7	2.6	3	2.5	3	3	2.5
Somme des anions	méq/l	0.9		0.89		0.89		0.92		0.92		0.89		0.89
Somme des cations	méq/l	0.97	0.63	0.97	0.64	2.87	0.67	1	0.63	1.04	0.63	1.02	0.66	0.97

LAVERT EAU TRAITEE		09/05/2012	15/05/2012	22/05/2012	30/05/2012	06/06/2012	13/06/2012	20/06/2012	27/06/2012	03/07/2012	11/07/2012	17/07/2012	25/07/2012	01/08/2012
Paramètres	Unité													
pH	unités pH	7.95	7.75	7.95	8.15	8.05	7.4	7.95	7.9	7.9	7.9	7.95	8.15	7.9
Température de mesure du pH	C	21	20	22.5	21.5	23	20.5	21.5	21.5	22	24	22.5	22.5	22.5
Titre hydrotimétrique ou dureté totale	F	13	11.8	10.4	12.7	12.5	12.7	12.6	13.3	14.4	11.3	10.5	13.3	12.3
Alcalinité totale (TAC)	F	11.7	11.6	10.2	11	12	11.9	11.7	12.2	12.5	10.9	10.6	12.4	11.7
Conductivité corrigée à 25℃	μS/cm	276	271	258	252	289	293	273	282	299	277	251	298	280
Température de mesure de la conductivité	$^{\circ}$	21	20	22.5	21.5	23	20.5	21.5	21.5	22	24	22.5	22.5	22.5
Calcium	mg Ca/l	47												
Chlorures	mg CI/I	8		7.9		7.8		8		15		7.8		7.9
Magnésium	mg Mg/l	3.2												
Potassium	mg K/I	0.9		0.8		0.9		0.8		0.9		0.8		0.9
Sodium	mg Na/l	7.8		8.2		7.9		7.9		8.6		8.2		7.8
Sulfates	mg SO4/I	4.1		3.3		3.7		3.9		4.2		3.3		3.6
Nitrates	mg NO3/I	12		6.6		10		11		12		6.8		9.7
Calcium (calcul TH)	mg Ca/l		42	37	46	45	46	46	48	52	41	38	48	45
Magnésium (calcul TH)	mg Mg/l		3	2.8	3.2	3	3	3	3	3.1	2.7	2.7	3.1	2.7
Somme des anions	méq/l	2.71		2.4		2.66		2.68		3.11		2.4		2.65
Somme des cations	méq/l	2.95	2.36	2.45	2.54	2.5	2.53	2.88	2.66	3.27	2.25	2.47	2.65	2.82

SAINTE FEREOLE

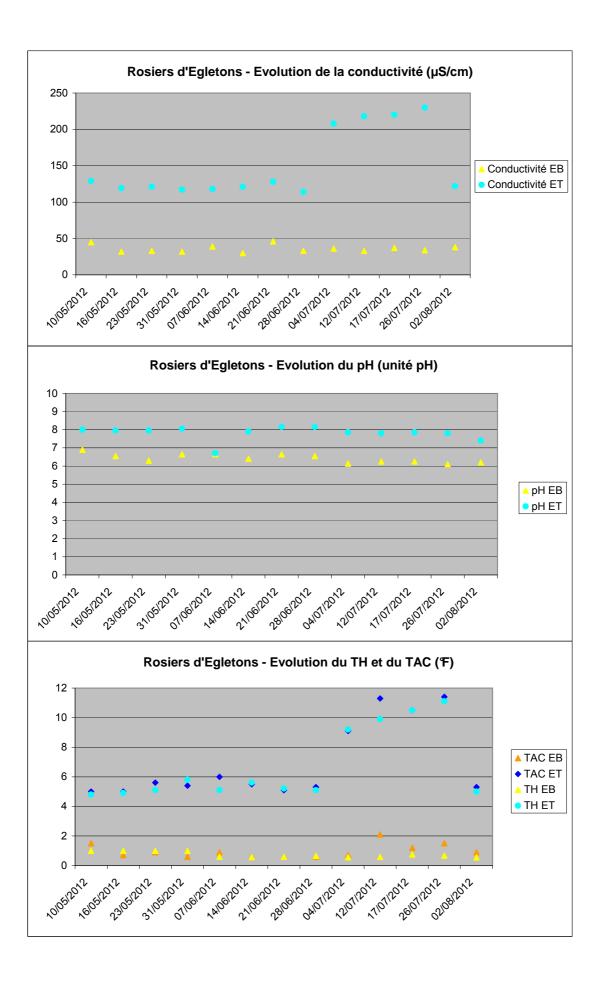
STE FEREOLE EAU BRUTE		09/05/2012	15/05/2012	22/05/2012	30/05/2012	06/06/2012	13/06/2012	20/06/2012	27/06/2012	03/07/2012	11/07/2012	17/07/2012	25/07/2012	01/08/2012
Paramètres	Unité													
pH	unités pH	6.55	6.7	6.55	6.4	6.55	5.9	6.35	6.55	6.5	6.55	6.3	6.75	6.4
Température de mesure du pH	S	21	21.5	22.5	21.5	22.5	20.5	21 .5	21.5	22.5	24	22	22	22.5
Titre hydrotimétrique ou dureté totale	F	1.7	1.8	1.8	1.8	2	2	2	1.9	1.9	1.9	1.8	1.9	1.9
Alcalinité totale (TAC)	F	1.6	2.2	1.7	1.9	1.8	1.8	1.9	2	1.9	2.6	1.9	2	2
Conductivité corrigée à 25℃	μS/cm	82	84	87	83	87	87	83	82	85	105	84	85	81
Température de mesure de la conductivité	S	21	21.5	22.5	21.5	22.5	20	21.5	21.5	22.5	24	22	22	22.5
Calcium	mg Ca/l	4.4												
Chlorures	mg Cl/l	6.3		5.8		6.5		6.4		6.2		6.3		6
Magnésium	mg Mg/l	1.6												
Potassium	mg K/l	1.2		1.1		1.6		1.3		1.6		1.3		1.4
Sodium	mg Na/l	7.9		7.6		8.7		8.1		8.1		8.3		7.9
Sulfates	mg SO4/I	5.9		5.5		5.5		5.9		5.8		5.5		5.4
Nitrates	mg NO3/I	4.6		4.1		4.6		4.5		4.4		4.2		4.3
Calcium (calcul TH)	mg Ca/l		4.6	4.5	4.6	5.3	4.8	4.9	5	4.9	5.1	4.6	4.8	5
Magnésium (calcul TH)	mg Mg/l		1.7	1.6	1.7	1.7	1.8	1.8	1.7	1.7	1.6	1.7	1.7	1.7
Somme des anions	méq/l	0.57		0.54		0.57		0.58		0.57		0.56		0.55
Somme des cations	méq/l	0.72	0.37	0.72	0.37	0.4	0.39	0.78	0.38	0.78	0.39	0.76	0.38	0.77

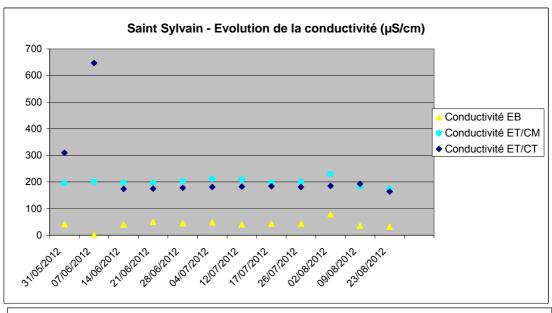
STE FEREOLE EAU TRAITEE		09/05/2012	15/05/2012	22/05/2012	30/05/2012	06/06/2012	13/06/2012	20/06/2012	27/06/2012	03/07/2012	11/07/2012	17/07/2012	25/07/2012	01/08/2012
Paramètres	Unité													
pH	unités pH	7.9	7.9		7.95	8	7.55	7.9	8	8.1	7.9	7.85	8.15	7.9
Température de mesure du pH	Ç	21	21.5		21.5	23	20.5	21.5	22	22 .5	24	22.5	22	22.5
Titre hydrotimétrique ou dureté totale	F	11.1	11.8		12.6	1 2.9	13.2	12.4	11.6	12.4	13.2	11.5	11.6	11.9
Alcalinité totale (TAC)	F	11	12.3		12.4	12.9	12.8	11.6	11.1	11.9	12.8	11.7	11.1	11.2
Conductivité corrigée à 25℃	μS/cm	259	280		337	304	290	280	264	2 90	307	290	287	287
Température de mesure de la conductivité	J	21	21.5		21.5	23	20 .5	21.5	22	22.5	24	22.5	22	22.5
Calcium	mg Ca/l	41												
Chlorures	mg Cl/l	7.5		STATION		7.5		12		11		12		14
Magnésium	mg Mg/l	2.4		ARRETEE										
Potassium	mg K/l	1.2				1.3		1.1		1.2		1		1.2
Sodium	mg Na/l	8.4				8.7		10		10		11		11
Sulfates	mg SO4/I	5.8				5.5		4.9		5.2		4.6		4.5
Nitrates	mg NO3/I	5.3				5		7.2		6.1		6.7		6.8
Calcium (calcul TH)	mg Ca/l		43		46	47	48	45	42	45	49	42	42	44
Magnésium (calcul TH)	mg Mg/l		2.5		2.5	2.5	2.7	2.6	2.5	2.7	2.6	2.5	2.5	2.4
Somme des anions	méq/l	2.42				2.81		2.74		2.7		2.75		2.79
Somme des cations	méq/l	2.62	2.36		2.52	2.58	2.63	2.96	2.32	2.95	2.64	2.78	2.32	2.89

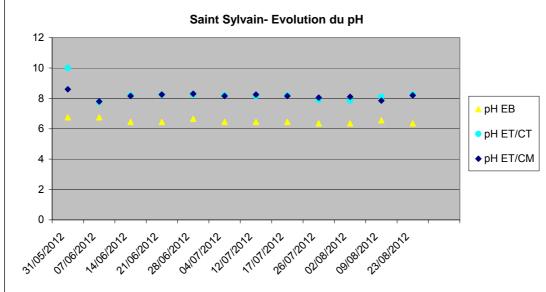
SAINTE FORTUNADE

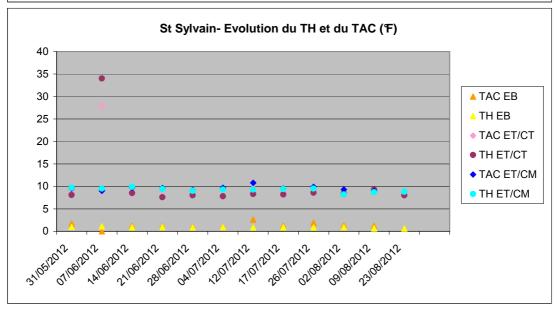
STE FORTUNADE EAU BRUTE		10/05/2012	16/05/2012	23/05/2012	31/05/2012	07/06/2012	14/06/2012	21/06/2012	28/06/2012	04/07/2012	12/07/2012	17/07/2012	26/07/2012	02/08/2012
Paramètres	Unité													
pH	unités pH	6.65	6.55	6.7	6.95	8.85	6.75	6.85	6.9	6.45	6.5	6.5	6.3	6.3
Température de mesure du pH	${\mathfrak C}$	23	22	21	21.5	22	22.5	22.5	22	22.5	22.5	22	23	22.5
Titre hydrotimétrique ou dureté totale	F	1.7	1.7	1.7	1.8	5.2	1.7	1.8	1.7	1.7	1.7	1.7	1.7	1.7
Alcalinité totale (TAC)	٩F	2.3	2.1	2.2	2	31.2	2.5	2.3	2.9	1.8	0.5	2.2	2.6	2.1
Conductivité corrigée à 25℃	μS/cm	82	63	70	63	1090	67	79	69	67	63	61	62	66
Température de mesure de la conductivité	${\mathfrak C}$	23	22	21	21.5	22	22.5	22.5	22	22.5	22	22	23	22.5
Calcium	mg Ca/l						4.2							
Chlorures	mg CI/I	3.8		4			4.1	4.3		4.2		4.1		4.1
Magnésium	mg Mg/l	1.6					1.6							
Potassium	mg K/I	0.6		0.7			0.5	0.7		0.6		0.5		< 0,5
Sodium	mg Na/l	5.4		5.1			5.1	5.5		4.8		5.1		5.5
Sulfates	mg SO4/I	1.8		1.8			2	2.5		2		2		2.1
Nitrates	mg NO3/I	2.2		2.2			2	2		2		1.7		1.7
Calcium (calcul TH)	mg Ca/l	1.9	4.1	4.4	4.2	19		4.6	4.2	4.1	4.3	4.1	4.4	4.3
Magnésium (calcul TH)	mg Mg/l		1.6	1.6	1.8	1.2		1.6	1.5	1.5	1.5	1.5	1.5	1.5
Somme des anions	méq/l	0.58		0.59			0.59	0.61		0.39		0.58		0.59
Somme des cations	méq/l	0.47	0.33	0.59	0.36	11.43	0.58	0.61	0.33	0.56	0.34	0.57	0.34	0.57

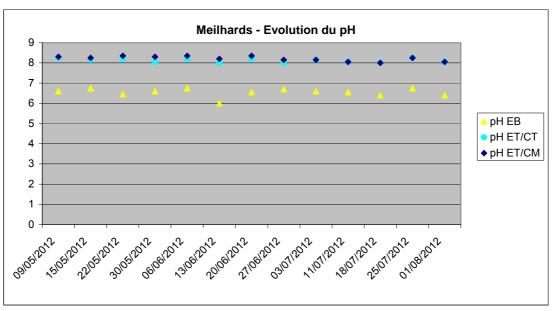
STE FORTUNADE EAU TRAITEE		10/05/2012	16/05/2012	23/05/2012	31/05/2012	07/06/2012	14/06/2012	21/06/2012	28/06/2012	04/07/2012	12/07/2012	17/07/2012	26/07/2012	02/08/2012
Paramètres	Unité													
pH	unités pH	8.05	8.05	8.1	8.25	8.05	8.1	8.2	8.15	8.05	7.95	7.9	8.1	8
Température de mesure du pH	C	23	22	22	21	22	21.5	23	22	21	23	22 .5	23	21.5
Titre hydrotimétrique ou dureté totale	F	10.5	10.4	10.4	1 0.6	10.7	10.8	11	10.6	10.6	10.7	10.5	10.8	9.5
Alcalinité totale (TAC)	F	10.4	10.6	11	10.8	10.6	12.1	10.7	10 .5	10.6	11.9	10.6	11	10.7
Conductivité corrigée à 25℃	μS/cm	238	229	228	223	209	219	232	2 21	240	236	222	228	254
Température de mesure de la conductivité	C	23	22	22	21	22	22.5	23	22	21	23	22.5	23	21.5
Calcium	mg Ca/l	39					40							
Chlorures	mg CI/I	3.9		3.8			4.1	4.1		4.2		4		4.4
Magnésium	mg Mg/l	1.8					1.8							
Potassium	mg K/I	0.6		0.6			0.6	0.7		0.6		0.6		1
Sodium	mg Na/I	5.2		5			5.2	5.2		5.1		5.1		5.1
Sulfates	mg SO4/I	1.9		2			2.1	1.9		2		2		2
Nitrates	mg NO3/I	2.3		2.2			2.1	2		2		1.9		1.7
Calcium (calcul TH)	mg Ca/l		38	39	39	40		41	40	40	40	39	40	36
Magnésium (calcul TH)	mg Mg/l		1.9	1.7	1.8	1.8		1.8	1.8	1.7	1.7	1.7	1.8	1.5
Somme des anions	méq/l	2.18		2.18			2.59	2.19		2.19		2.19		2.19
Somme des cations	méq/l	2.34	2.07	2.3	2.11	2.13	2.4	2.43	2.13	2.36	2.13	2.34	2.16	2.15

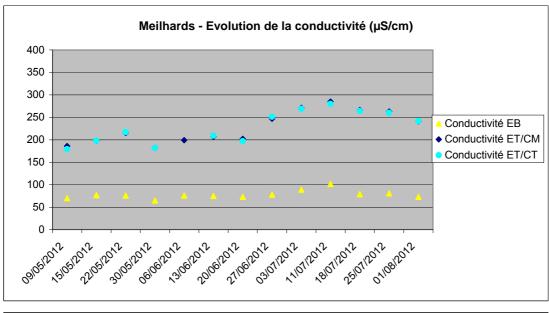

SAINT FREJOUX

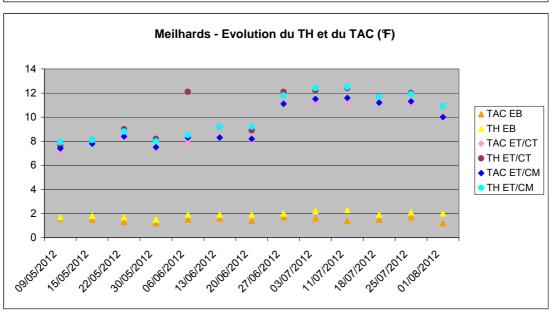

ST FREJOUX EAU BRUTE		10/05/2012	16/05/2012	23/05/2012	31/05/2012	07/06/2012	14/06/2012	21/06/2012	28/06/2012	04/07/2012	12/07/2012	17/07/2012	26/07/2012	02/08/2012
Paramètres	Unité													
рН	unités pH	6.55	6.45	6.4	6.7	6.5	6.45	6.7	6.5	6.35	6.3	6.55	6.3	6.25
Température de mesure du pH	Ç	23	22	21.5	21.5	23	22	23	21.5	22 .5	23	22.5	23.5	22.5
Titre hydrotimétrique ou dureté totale	F	1.0	1.0	1.0	1.0	0.82	0.73	0.78	0.73	0.76	0.72	0.79	0.79	0.76
Alcalinité totale (TAC)	F	1	1.1	0.9	0.9	0.8	1.1	0.9	0.8	0.8	2.3	1	1.6	1.2
Conductivité corrigée à 25℃	μS/cm	48	34	37	34	36	32	44	36	38	41	33	33	38
Température de mesure de la conductivité	Ç	23	22	21.5	21.5	23	22	23	21.5	22.5	23	22.5	23.5	22.5
Calcium	mg Ca/l						1.6							
Chlorures	mg CI/I	2.4		2.2			2.5	2.5		2.6		2.4		2.4
Magnésium	mg Mg/l	0.8					0.8							
Potassium	mg K/I	0.7		0.6			0.6	0.7		0.7		0.7		< 0,5
Sodium	mg Na/l	3.3		3.1			3	3.2		3.2		3.1		3.3
Sulfates	mg SO4/I	0.6		0.6			0.5	0.5		0.6		0.7		0.7
Nitrates	mg NO3/I	3		3			3	3		3		3		3
Calcium (calcul TH)	mg Ca/l	1.9	1.6	1.7	1.8	2		1.7	1.6	1.7	1.6	1.8	1.8	1.7
Magnésium (calcul TH)	mg Mg/l		0.8	0.8	0.8	0.8		0.9	8.0	0.8	0.8	8.0	0.8	0.8
Somme des anions	méq/l	0.33		0.12			0.33	0.13		0.13		0.33		0.33
Somme des cations	méq/l	0.32	0.15	0.3	0.16	0.16	0.29	0.31	0.15	0.31	0.14	0.31	0.16	0.3

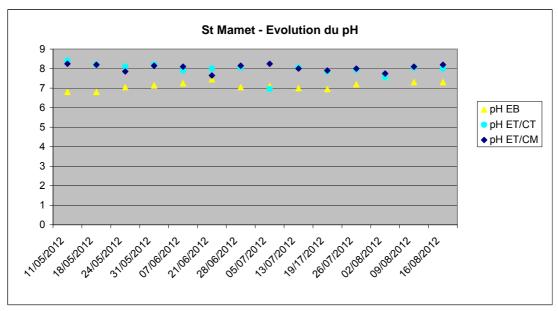

ST FREJOUX EAU TRAITEE		10/05/2012	16/05/2012	23/05/2012	31/05/2012	07/06/2012	14/06/2012	21/06/2012	28/06/2012	04/07/2012	12/07/2012	17/07/2012	26/07/2012	02/08/2012
Paramètres	Unité								•					
pH	unités pH	8.1	8.1	8.1	8.25	8.05	8.05	8.1	8.15	8	8.05	8.05	8.05	7.9
Température de mesure du pH	C	25.5	22	21	21	22.5	22.5	22	22	22.5	23	22.5	23	22.5
Titre hydrotimétrique ou dureté totale	F	8.8	8.7	8.7	8.8	8.9	8.9	9	8.8	8.8	8.9	8.8	8.9	8.6
Alcalinité totale (TAC)	F	9	8.8	8.9	8.9	8.6	8.6	8.6	8.7	8.5	10.1	8.8	9.5	9
Conductivité corrigée à 25℃	μS/cm	199	189	187	184	174	175	181	1 77	195	188	184	188	189
Température de mesure de la conductivité	°C	25.5	22	21	21	22.5	22.5	22	22	22.5	23	22.5	23	22.5
Calcium	mg Ca/l	33					34							
Chlorures	mg Cl/l	2.3		2.2			2.5	2.5		2.5		2.5		2.7
Magnésium	mg Mg/l	1					1							
Potassium	mg K/l	0.6		0.6			1.2	0.7		0.7		0.6		< 0,5
Sodium	mg Na/l	3		3.1			3.3	3.2		3.3		3.1		3.6
Sulfates	mg SO4/I	0.6		0.7			0.6	0.6		0.7		0.7		0.8
Nitrates	mg NO3/I	2.9		3			3	3		3		3.1		3.1
Calcium (calcul TH)	mg Ca/l		33	33	33	34		34	33	33	34	34	34	33
Magnésium (calcul TH)	mg Mg/l		1	1	1	1		1	1	1	1	1	1	1
Somme des anions	méq/l	1.72		1.72			1.73	1.73		1.73		1.73		1.74
Somme des cations	méq/l	1.9	1.74	1.89	1.75	1.78	1.96	1.95	1.75	1.91	1.78	1.91	1.77	1.88

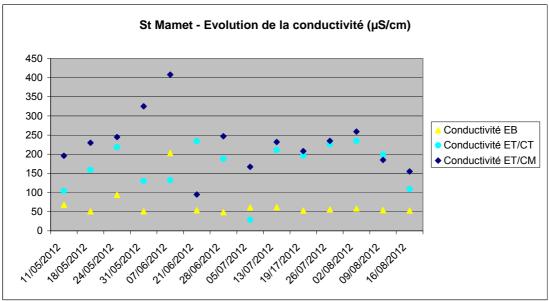

ANNEXE III:

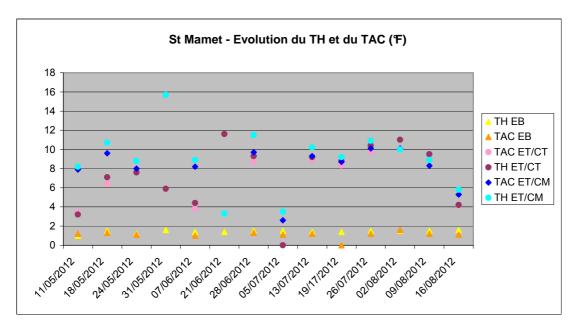

REPRESENTATION GRAPHIQUE DE L'EVOLUTION DES PARAMETRES PHYSICO-CHIMIQUES PAR SITES ET PAR PRELEVEMENTS

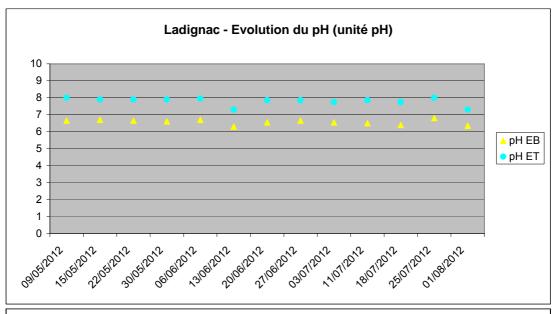


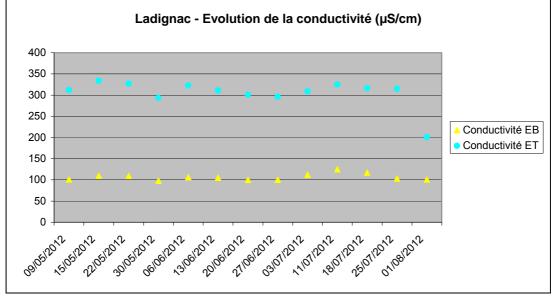


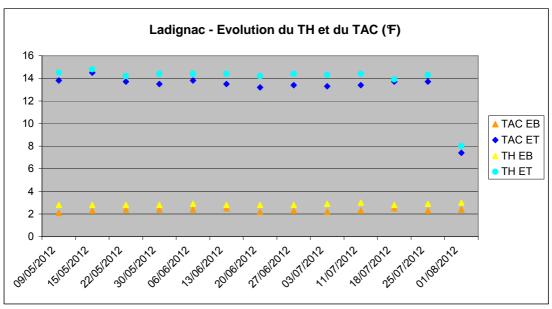


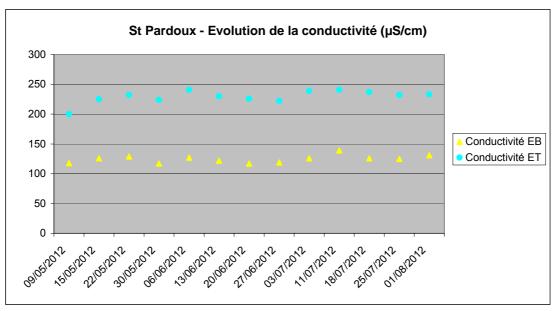


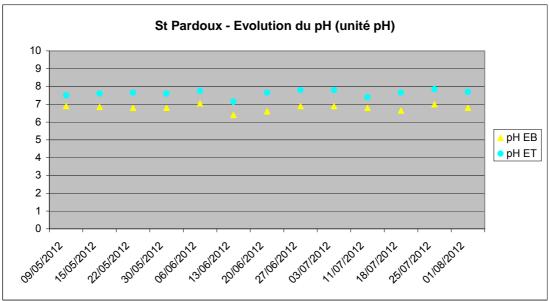


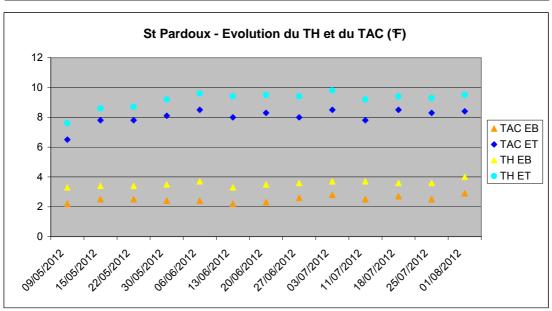


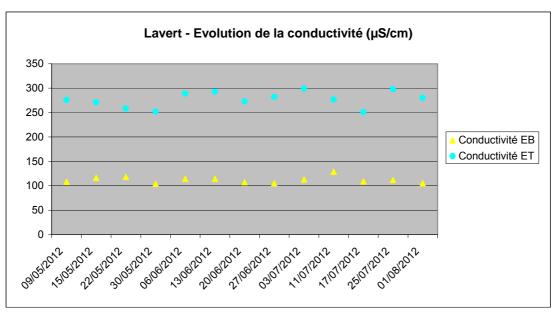


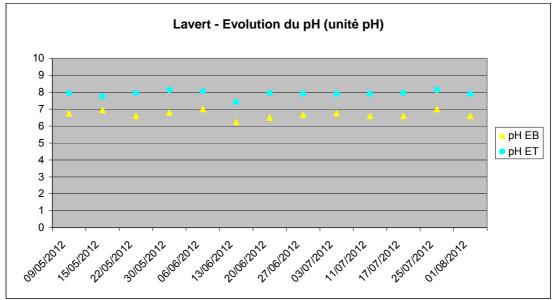


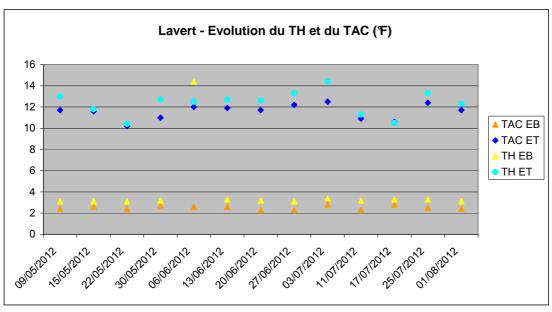


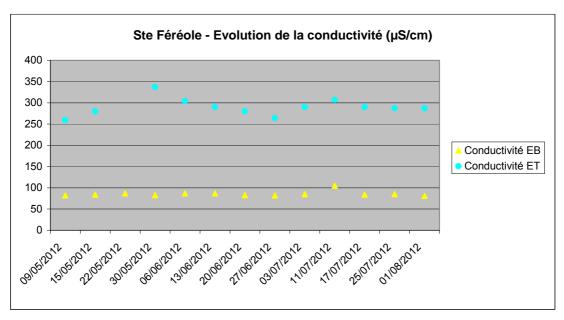


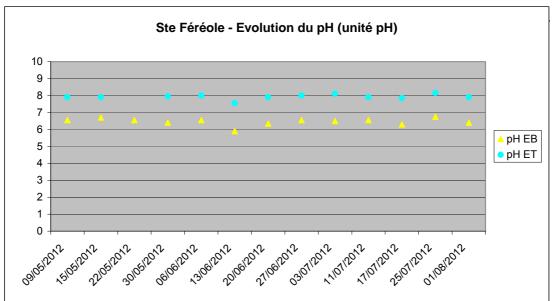


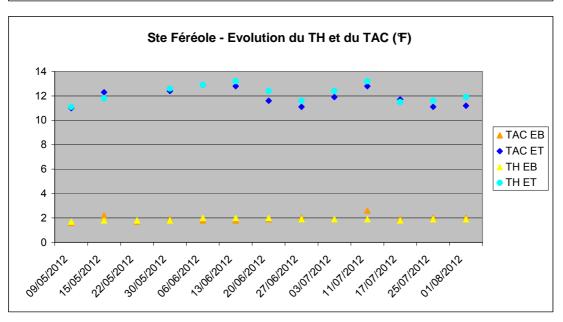


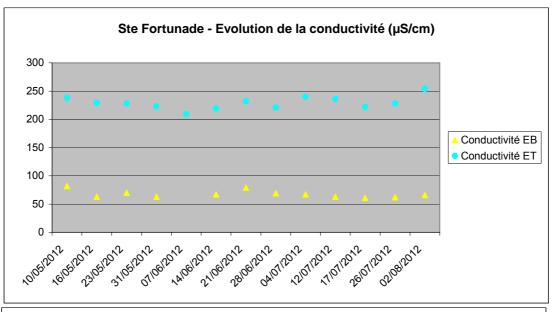


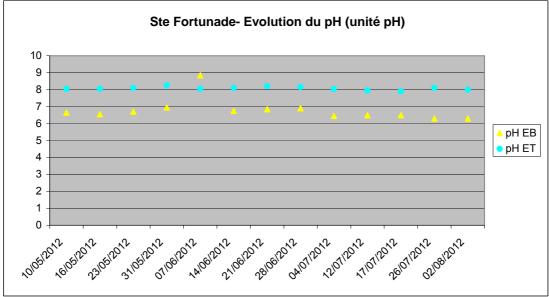


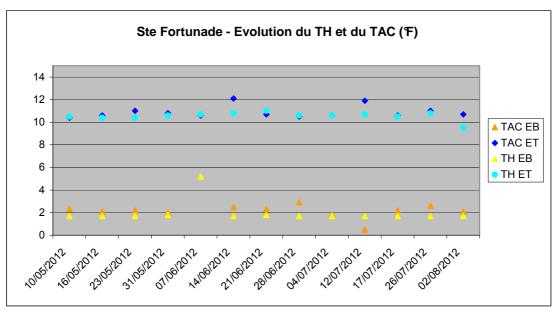


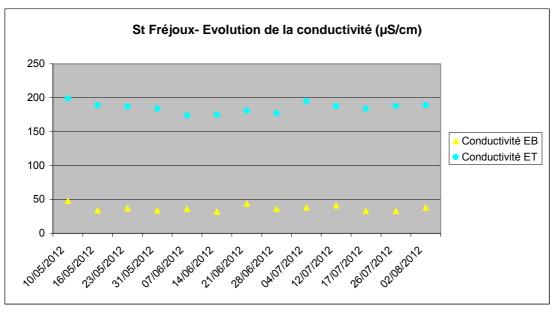


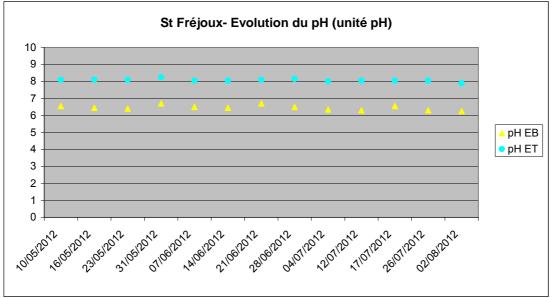


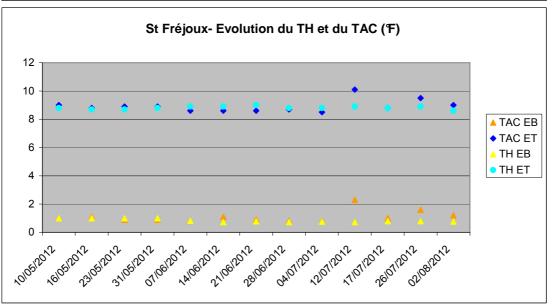












ANNEXE IJ:

CALCUL D'EQUILIBRE CALCO-CARBONIQUE

SAINT SYLVAIN

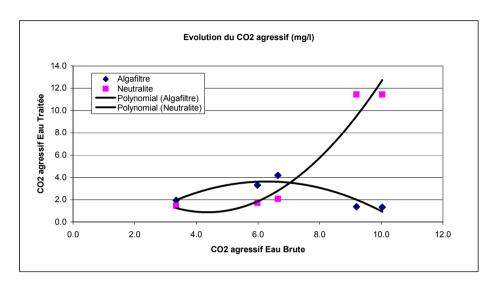
Eau brute ST SYLVAIN	Туре	pH terrain	pHs	pHs-pH	2pH-pHeq	Conductivité (µS/cm)	TH (F)	TAC (°F)	CO2 agressif (mg/l)	CO2 agressif (mM/l)		
14/06/2012	Agressive	6.6	9.27	2.67	11.94	40	0.89	1.2	6.6	0.151		
21/06/2012	Agressive	6.6	9.33	2.73	12.06	50	0.92	1.1	6.0	0.136		
04/07/2012	Agressive	6.8	9.55	2.75	12.3	49	0.92	1	3.3	0.076		
17/07/2012	Agressive	6.45	9.09	2.64	11.73	43	0.88	1.2	9.2	0.209		
02/08/2012	Agressive	6.45	9.02	2.57		79	0.88	1.3	10.0	0.228		
Moyenne		6.58	9.25	2.67	12.01	52.20	0.90	1.16	7.04	0.16		
Eau traitée ST SYLVAIN AKDOLIT HC	Туре	pH terrain	pHeq	pHeq-pH	2pH-pHeq	Conductivité (µS/cm)	TH (°F)	TAC (℉)	CO2 agressif (mg/l)	CO2 agressif (mM/l)	Indice de Larson	Indice de Leroy
14/06/2012	Agressive	7.6	8.42	0.82	9.24	174	8.5	8.3	4.2	0.095	0.07	0.97
21/06/2012	Agressive	7.65	8.42	0.77	9.19	175	7.6	7.9	3.3	0.075	0.07	1.05
04/07/2012	Agressive	7.8	8.37	0.57	8.94	181	7.8	7.6	1.9	0.044	0.08	0.97
17/07/2012	Agressive	7.9	8.28	0.38	8.66	184	8.2	8.7	1.4	0.031	0.06	1.06
02/08/2012	Agressive	7.9	8.27	0.37	8.64	185	8.4	8.6	1.3	0.03	0.07	1.02
Moyenne		7.77	8.35	0.58	8.93	179.80	8.10	8.22	2.42	0.06	0.07	1.02

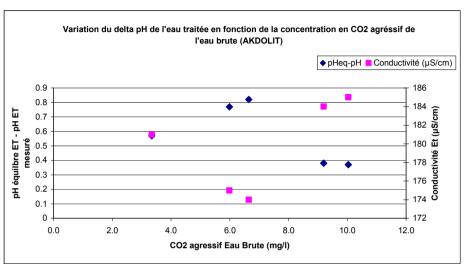
Eau traitée ST SYLVAIN NEUTRALITE	Туре	pH terrain	pHeq	pHeq-pH	2pH-pHeq	Conductivité (µS/cm)	TH (℉)	TAC (℉)	CO2 agressif (mg/l)	CO2 agressif (mM/l)	Indice de Larson	Indice de Leroy
14/06/2012	Agressive	7.8	8.23	0.43	8.66	197	9.9	9.7	2.1	0.047	0.06	0.98
21/06/2012	Agressive	7.85	8.24	0.39	8.63	197	9.4	9.6	1.7	0.039	0.06	1.01
04/07/2012	Agressive	7.9	8.26	0.36	8.62	211	9.3	9.7	1.5	0.033	0.07	1.05
17/07/2012	Agressive	7.2	8.24	1.04	9.28	197	9.4	9.5	11.4	0.26	0.06	1.00
02/08/2012	Agressive	7.2	8.3	1.1	9.4	230	8.2	9.3	11.4	0.26	0.07	1.12
Moyenne		7.59	8.25	0.66	8.92	206.40	9.24	9.56	5.62	0.13	0.07	1.03

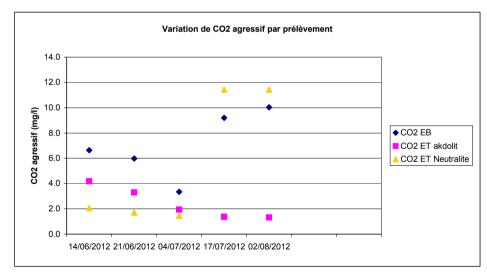
<u>Légende</u>

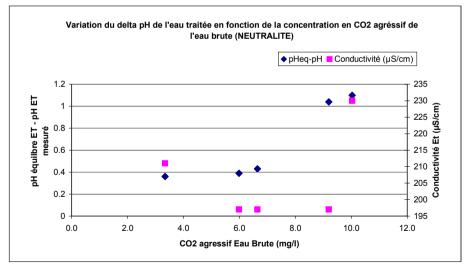
Conductivité TH TAC

< 200 µS/cm <8°F de 0.7 à 1.3


< 1.7 ou > 1.3 Corrosive


Indice Leroy


Indice Larson


Non corrosive < 0.2 de 0.2 à 0.4 de 0.4 à 0.5 Pas de tendance à la corrosion Faible tendance Légère tendance

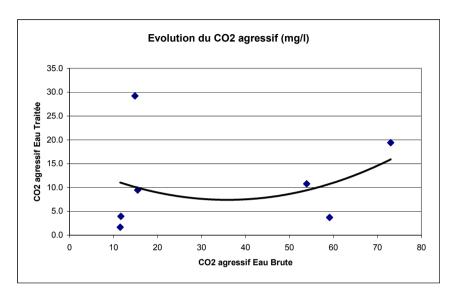
SAINT SYLVAIN

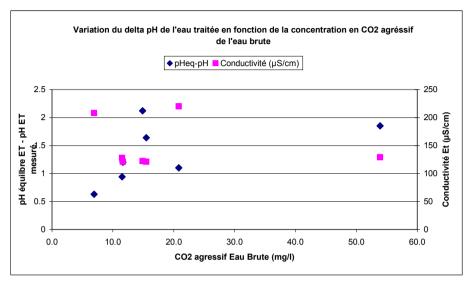
ROSIERS D'EGELTONS

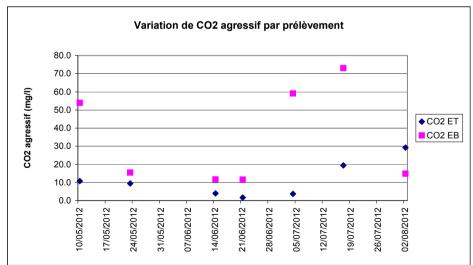
	Eau brute ROSIERS D'EGELTONS	Туре	pH terrain	pHs	pHs-pH	2pH-pHeq	Conductivité (µS/cm)	TH (°F)	TAC (°F)	CO2 agressif (mg/l)	CO2 agressif (mM/I)	CO2 agressif + injecté (mg/l)
	10/05/2012	Agressive	5.8	7.93	2.13	10.06	45	1	1.5	53.9	1.225	53.9
	23/05/2012	Agressive	6.1	8.86	2.76	11.62	33	1	0.9	15.5	0.352	15.488
	14/06/2012	Agressive	6	9.07	3.07	12.14	30	0.57	0.6	11.7	0.265	11.66
	21/06/2012	Agressive	6	9.06	3.06	12.12	46	0.6	0.6	11.5	0.262	11.528
CO2	04/07/2012	Agressive	6.3	9.35	3.05	12.4	36	0.56	0.7	6.9	0.157	59.108
CO2	17/07/2012	Agressive	6.1	8.66	2.56	11.22	37	0.75	1.2	20.8	0.473	73.012
	02/08/2012	Agressive	6.1	8.84	2.74	11.58	38	0.55	0.9	14.9	0.338	14.872
	Moyenne phas	e 1	6.00	8.75	2.75	11.50	38.40	0.74	0.90	21.49	0.49	21.49
	Moyenne phas	e 2	6.20	9.01	2.81	11.81	36.50	0.66	0.95	13.86	0.32	66.06

	Eau traitée ROSIERS D'EGELTONS	Туре	pH terrain	pHeq	pHeq-pH	2pH-pHeq	Conductivité (µS/cm)	TH (年)	TAC (°F)	CO2 agressif (mg/l)	CO2 agressif (mM/l)	Indice de Larson	Indice de Leroy
	10/05/2012	Agressive	7	8.85	1.85	10.7	129	4.706	5	10.8	0.245	0.10	0.97
	23/05/2012	Agressive	7.1	8.74	1.64	10.38	121	5.247	5.6	9.5	0.215	0.10	0.97
	14/06/2012	Agressive	7.48	8.68	1.2	9.88	121	5.6	5.5	4.0	0.09	0.09	0.98
	21/06/2012	Agressive	7.8	8.74	0.94	9.68	128	5.2	5.1	1.7	0.038	0.10	0.95
CO2	04/07/2012	Agressive	7.6	8.23	0.63	8.86	208	9.2	9.1	3.7	0.085	0.06	0.99
CO2	17/07/2012	Agressive	7	8.1	1.1	9.2	220	10.5	10.5	19.4	0.441	0.05	1.01
	02/08/2012	Agressive	6.6	8.72	2.12	10.84	122	5	5.3	29.2	0.664	0.10	1.04
	Moyenne phas	e 1	7.2	8.7	1.6	10.3	124.2	5.2	5.3	11.0	0.3	0.1	1.0
	Moyenne phas	e 2	7.3	8.2	0.9	9.0	214.0	9.9	9.8	11.6	0.3	0.1	1.0

CO2=QEB=19.17 m3/h CO2= 52.2 mg/l


<u>Légende</u>


Conductivité TH TAC


Indice Leroy

< 200 μS/cm		
<8°F		
de 0.7 à 1.3	< 1.7 ou > 1.3	
Non corrosive	Corrosive	
< 0.2	de 0.2 à 0.4	de 0.4 à 0.5
Pas de tendance à la corrosion	Faible tendance	Légère tendance

ROSIERS D'EGELTONS

MEILHARDS

Eau brute MEILHARDS	Туре	pH terrain	pHs	pHs-pH	2pH-pHeq	Conductivité (µS/cm)	TH (°F)	TAC (℉)	CO2 agressif (mg/l)	CO2 agressif (mM/l)
09/05/2012	Agressive	6.4	8.75	2.35	11.1	70	1.692	1.6	14.0	0.318
22/05/2012	Agressive	6.2	8.64	2.44	11.08	76	1.742	1.3	18.0	0.41
06/06/2012	Agressive	6.3	8.66	2.36	11.02	76	1.9	1.5	16.5	0.375
20/06/2012	Agressive	6.2	8.56	2.36	10.92	73	1.9	1.4	19.0	0.432
03/07/2012	Agressive	6.2	8.42	2.22	10.64	89	2.2	1.6	21.1	0.479
18/07/2012	Agressive	6.2	8.47	2.27	10.74	79	1.9	1.5	19.4	0.44
01/08/2012	Agressive	6.3	8.78	2.48	11.26	73	2	1.2	12.0	0.273
Moyenne		6.26	8.61	2.35	10.97	76.57	1.90	1.44	17.14	0.39

Eau traitée MEILHARDS <u>ALGAFILTRE CA</u>	Туре	pH terrain	pHeq	pHeq-pH	2pH-pHeq	Conductivité (µS/cm)	TH (Ŧ)	TAC (℉)	CO2 agressif (mg/l)	CO2 agressif (mM/l)	Indice de Larson	Indice de Leroy
09/05/2012	Agressive	7.3	8.39	1.09	9.48	179	7.617	7.1	6.8	0.154	0.14	0.92
22/05/2012	Agressive	7.8	8.29	0.49	8.78	217	8.95	8.6	1.9	0.043	0.12	0.91
06/06/2012	Agressive	7.6	8.21	0.61	8.82	495	12.1	7.9	3.1	0.071	1.78	0.65
20/06/2012	Agressive	7.6	8.29	0.69	8.98	197	8.9	8.1	3.5	0.079	0.14	0.89
03/07/2012	Agressive	7.6	7.99	0.39	8.38	269	12.2	11.1	3.2	0.072	0.09	0.91
18/07/2012	Agressive	7.6	7.97	0.37	8.34	264	11.7	11.3	3.1	0.07	0.09	0.97
01/08/2012	Agressive	7.7	8.05	0.35	8.4	242	10.9	10.1	2.2	0.049	0.10	0.93
Moyenne		7.60	8.17	0.57	8.74	266.14	10.34	9.17	3.38	0.08	0.35	0.88

Eau traitée MEILHARDS NEUTRALITE	Туре	pH terrain	pHeq	pHeq-pH	2pH-pHeq	Conductivité (μS/cm)	TH (°F)	TAC (°F)	CO2 agressif (mg/l)	CO2 agressif (mM/l)	Indice de Larson	Indice de Leroy
09/05/2012	Agressive	7.4	8.44	1.04	9.48	186	7.776	7.4	5.5	0.124	0.14	0.94
22/05/2012	Agressive	8	8.37	0.37	8.74	215	8.773	8.4	1.0	0.022	0.13	0.90
06/06/2012	Agressive	7.8	8.35	0.55	8.9	199	8.5	8.3	2.0	0.046	0.13	0.97
20/06/2012	Agressive	7.8	8.32	0.52	8.84	202	9.2	8.2	1.9	0.044	0.14	0.89
03/07/2012	Equilibre	7.8	8	0.2	8.2	271	12.4	11.5	1.3	0.03	0.11	0.92
18/07/2012	Agressive	7.5	8.02	0.52	8.54	266	11.7	11.2	4.7	0.107	0.09	0.96
01/08/2012	Agressive	7.5	8.09	0.59	8.68	241	10.9	10	4.6	0.105	0.10	0.92
Moyenne		7.69	8.23	0.54	8.77	225.71	9.89	9.29	3.00	0.07	0.12	0.93

<u>Légende</u>

Conductivité TH TAC Indice Leroy

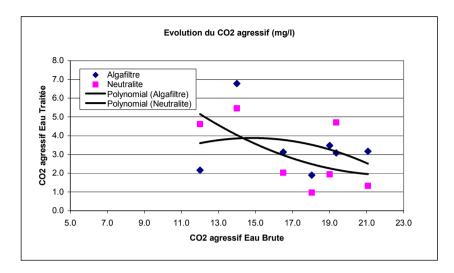
Indice Larson

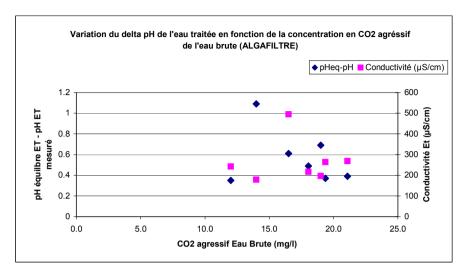
 <200 µS/cm</td>

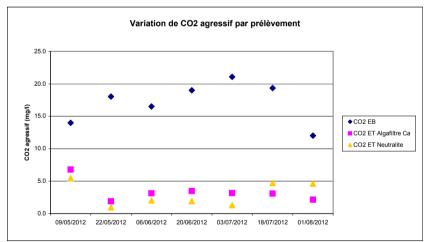
 <8 ° F</td>

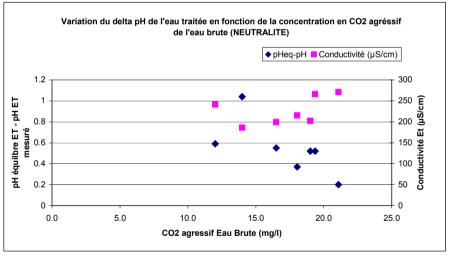
 de 0.7 å 1.3

 Non corrosive


 <0.2</td>


 Pas de tendance à la corrosion


<1.7 ou > 1.3
Corrosive
de 0.2 à 0.4
Faible tendance


de 0.4 à 0.5 Légère tendance

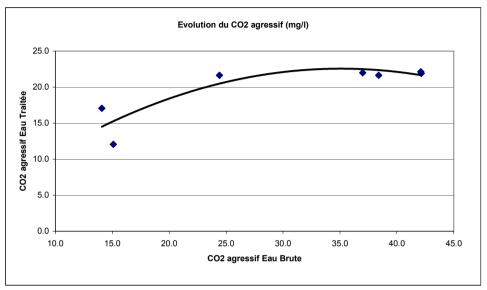
MEILHARDS

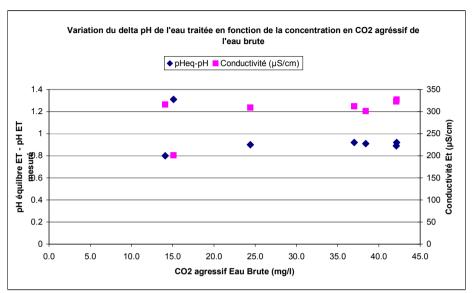
LADIGNAC LE LONG

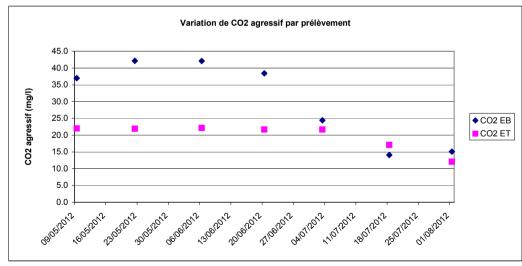
Eau brute	Туре	pH terrain	pHs	pHs-pH	2pH-pHeq	Conductivité (µS/cm)	TH (°F)	TAC (°F)	CO2 agressif (mg/l)	CO2 agressif (mM/I)
09/05/2012	Agressive	6.1	9.73	3.63	13.36	101	2.77	2.1	37.0	0.841
22/05/2012	Agressive	6.1	9.63	3.53	13.16	109	2.736	2.4	42.2	0.958
06/06/2012	Agressive	6.1	9.59	3.49	13.08	106	2.9	2.4	42.1	0.957
20/06/2012	Agressive	6.1	9.65	3.55	13.2	100	2.8	2.2	38.4	0.873
03/07/2012	Agressive	6.3	9.65	3.35	13	112	2.9	2.2	24.4	0.555
18/07/2012	Agressive	6.6	9.6	3	12.6	117	2.8	2.5	14.1	0.32
01/08/2012	Agressive	6.55	9.55	3	12.55	101	3	2.4	15.1	0.343
Moyenne		6.26	9.63	3.36	12.99	106.57	2.84	2.31	30.47	0.69

Eau traitée LADIGNAC	Туре	pH terrain	pHeq	pHeq-pH	2pH-pHeq	Conductivité (µS/cm)	TH (°F)	TAC (℉)	CO2 agressif (mg/l)	CO2 agressif (mM/l)	Indice de Larson	Indice de Leroy
09/05/2012	Agressive	7	7.92	0.92	8.84	312	14.358	13.8	22.0	0.5	0.11	0.93
22/05/2012	Agressive	7	7.92	0.92	8.84	327	14.358	13.7	21.9	0.498	0.10	0.92
06/06/2012	Agressive	7	7.89	0.89	8.78	323	14.4	13.8	22.1	0.503	0.10	0.96
20/06/2012	Agressive	7	7.91	0.91	8.82	301	14.2	13.2	21.6	0.492	0.11	0.94
03/07/2012	Agressive	7	7.9	0.9	8.8	309	14.3	13.3	21.6	0.492	0.11	0.93
18/07/2012	Agressive	7.1	7.9	8.0	8.7	316	13.9	13.7	17.1	0.388	0.10	0.99
01/08/2012	Agressive	7.1	8.41	1.31	9.72	201	8	7.4	12.1	0.274	0.19	0.92
Moyenne		7.03	7.98	0.95	8.93	298.43	13.36	12.70	19.78	0.45	0.12	0.94

<u>Légende</u>


Conductivité TH TAC Indice Leroy


Indice Larson


< 200 µS/cm <8°F de 0.7 à 1.3 < 1.7 ou > 1.3 Corrosive de 0.2 à 0.4 Non corrosive < 0.2 Pas de tendance à la corrosion Faible tendance

de 0.4 à 0.5 Légère tendance

LADIGNAC LE LONG

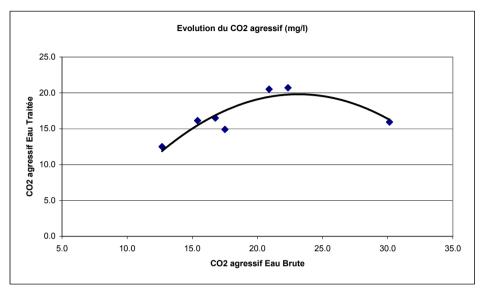
SAINT PARDOUX L'ORTIGIER

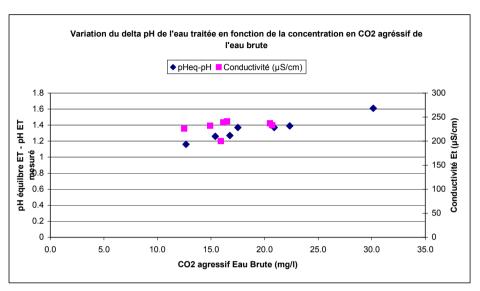
Eau brute ST PARDOUX	Туре	pH terrain	pHs	pHs-pH	2pH-pHeq	Conductivité (µS/cm)	TH (°F)	TAC (°F)	CO2 agressif (mg/l)	CO2 agressif (mM/l)
09/05/2012	Agressive	6.2	9.57	3.37	12.94	118	3.283	2.2	30.1	0.685
22/05/2012	Agressive	6.8	9.24	2.44	11.68	129	3.399	2.5	17.5	0.398
06/06/2012	Agressive	6.5	9.47	2.97	12.44	127	3.7	2.4	16.8	0.381
20/06/2012	Agressive	6.6	9.5	2.9	12.4	117	3.5	2.3	12.7	0.288
03/07/2012	Agressive	6.6	9.36	2.76	12.12	126	3.7	2.8	15.4	0.35
18/07/2012	Agressive	6.45	9.4	2.95	12.35	126	3.6	2.7	20.9	0.475
01/08/2012	Agressive	6.45	9.3	2.85	12.15	131	4	2.9	22.4	0.508
Moyenne		6.51	9.41	2.89	12.30	124.86	3.60	2.54	19.39	0.44

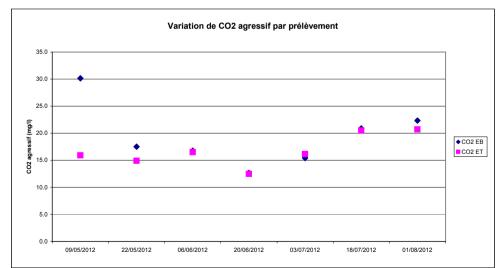
Eau traitée ST PARDOUX	Туре	pH terrain	pHeq	pHeq-pH	2pH-pHeq	Conductivité (µS/cm)	TH (F)	TAC (Ŧ)	CO2 agressif (mg/l)	CO2 agressif (mM/l)	Indice de Larson	Indice de Leroy
09/05/2012	Agressive	6.9	8.51	1.61	10.12	200	7.649	6.5	15.9	0.362	0.31	0.79
22/05/2012	Agressive	7	8.37	1.37	9.74	232	8.649	7.8	14.9	0.339	0.24	0.85
06/06/2012	Agressive	7	8.27	1.27	9.54	241	9.6	8.5	16.5	0.375	0.22	0.88
20/06/2012	Agressive	7.1	8.26	1.16	9.42	226	9.5	8.3	12.5	0.284	0.22	0.87
03/07/2012	Agressive	7	8.26	1.26	9.52	239	9.8	8.5	16.1	0.367	0.27	0.87
18/07/2012	Agressive	6.9	8.27	1.37	9.64	237	9.4	8.5	20.5	0.466	0.23	0.90
01/08/2012	Agressive	6.9	8.29	1.39	9.68	233	9.5	8.4	20.7	0.471	0.24	0.88
Moyenne		6.97	8.32	1.35	9.67	229.71	9.16	8.07	16.75	0.38	0.25	0.86

<u>Légende</u>

Conductivité TH TAC < 200 µS/cm < 8 ° F de 0.7 à 1.3 Non corrosive


<1.7 ou > 1.3 Corrosive


Indice Leroy Indice Larson


< 0.2 de 0.2 à 0.4</p>
Pas de tendance à la corrosion
Faible tendance

de 0.4 à 0.5 Légère tendance

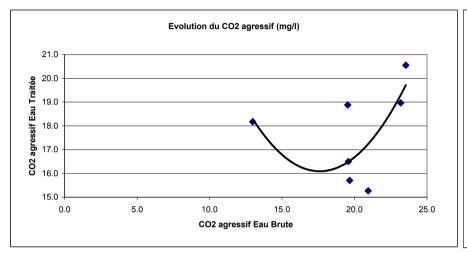
SAINT PARDOUX L'ORTIGIER

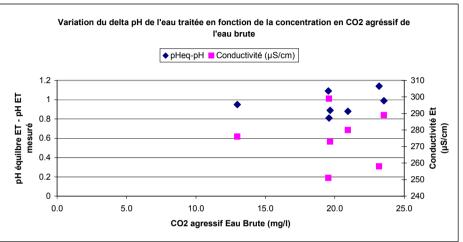
LAVERT

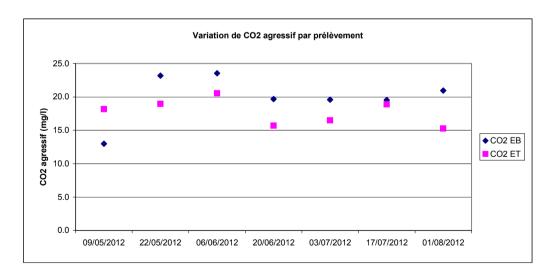
Eau brute LAVERT	Туре	pH terrain	pHs	pHs-pH	2pH-pHeq	Conductivité (µS/cm)	TH (°F)	TAC (℉)	CO2 agressif (mg/l)	CO2 agressif (mM/l)
09/05/2012	Agressive	6.6	9.47	2.87	12.34	108	3.102	2.4	13.0	0.295
22/05/2012	Agressive	6.6	9.24	2.64	11.88	118	3.145	2.4	23.2	0.527
06/06/2012	Agressive	6.35	8.58	2.23	10.81	114	14	2.6	23.5	0.535
20/06/2012	Agressive	6.4	9.46	3.06	12.52	107	3.2	2.3	19.7	0.447
03/07/2012	Agressive	6.5	9.36	2.86	12.22	113	3.4	2.8	19.6	0.445
17/07/2012	Agressive	6.5	9.38	2.88	12.26	109	3.3	2.8	19.5	0.444
01/08/2012	Agressive	6.4	9.47	3.07	12.54	105	3.1	2.4	20.9	0.476
Moyenne		6.48	9.28	2.80	12.08	110.57	4.75	2.53	19.92	0.45

Eau traitée LAVERT	Туре	pH terrain	pHeq	pHeq-pH	2pH-pHeq	Conductivité (µS/cm)	TH (℉)	TAC (°F)	CO2 agressif (mg/l)	CO2 agressif (mM/l)	Indice de Larson	Indice de Leroy
09/05/2012	Agressive	7	7.95	0.95	8.9	276	13.067	11.7	18.2	0.413	0.14	0.86
22/05/2012	Agressive	7	8.14	1.14	9.28	258	10.402	10.2	19.0	0.431	0.14	0.98
06/06/2012	Agressive	7	7.99	0.99	8.98	289	12.5	12	20.5	0.467	0.12	0.96
20/06/2012	Agressive	7.1	7.99	0.89	8.88	273	12.6	11.7	15.7	0.357	0.13	0.92
03/07/2012	Agressive	7.1	7.91	0.81	8.72	299	14.4	12.5	16.5	0.375	0.20	0.88
17/07/2012	Agressive	7	8.09	1.09	9.18	251	10.5	10.6	18.9	0.429	0.14	1.00
01/08/2012	Agressive	7.1	7.98	0.88	8.86	280	12.3	11.7	15.3	0.347	0.13	0.95
Moyenne		7.04	8.01	0.96	8.97	275.14	12.25	11.49	17.72	0.40	0.14	0.93

<u>Légende</u>


Conductivité TH TAC


Indice Leroy


Indice Larson

< 200 μS/cm		
<8°F		
de 0.7 à 1.3	< 1.7 ou > 1.3	
Non corrosive	Corrosive	
< 0.2	de 0.2 à 0.4	de 0.4 à 0.5
Pas de tendance à la corrosion	Faible tendance	Légère tendance

LAVERT

SAINTE FEREOLE

Eau brute STE FEREOLE	Туре	pH terrain	pHs	pHs-pH	2pH-pHeq	Conductivit é (µS/cm)	TH (°F)	TAC (°F)	CO2 agressif (mg/l)	CO2 agressif (mM/l)
09/05/2012	Agressive	6.8	9.18	2.38	11.56	82	1.758	1.6	5.5	0.125
22/05/2012	Agressive	6	8.13	2.13	10.26	87	1.783	1.7	37.7	0.856
06/06/2012	Agressive	6.2	8.37	2.17	10.54	87	2	1.8	25.1	0.571
20/06/2012	Agressive	6.3	9.97	3.67	13.64	83	2	1.9	20.5	0.467
03/07/2012	Agressive	6.3	9.98	3.68	13.66	85	1.9	1.9	20.7	0.47
17/07/2012	Agressive	6.4	10.04	3.64	13.68	84	1.8	1.9	16.4	0.372
01/08/2012	Agressive	6.4	9.9	3.5	13.4	81	1.9	2	17.3	0.393
Moyenne		6.34	9.37	3.02	12.39	84.14	1.88	1.83	20.45	0.46

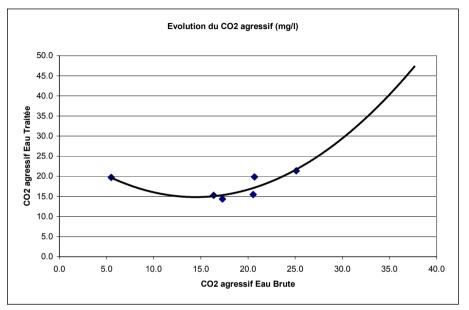
Eau traitée STE FEREOLE	Туре	pH terrain	pHeq	pHeq-pH	2pH-pHeq	Conductivit é (µS/cm)	TH (°F)	TAC (°F)	CO2 agressif (mg/l)	CO2 agressif (mM/I)	Indice de Larson	Indice de Leroy
09/05/2012	Agressive	7	8.08	1.08	9.16	259	11.238	11	19.7	0.448	0.15	0.98
22/05/2012	à l'arrêt				0							
06/06/2012	Agressive	7	7.94	0.94	8.88	304	12.9	12.9	21.3	0.485	0.13	1.01
20/06/2012	Agressive	7.1	7.99	0.89	8.88	280	12.4	11.6	15.4	0.351	0.19	0.94
03/07/2012	Agressive	7	7.97	0.97	8.94	290	12.4	11.9	19.8	0.451	0.18	0.97
17/07/2012	Agressive	7.1	7.99	0.89	8.88	290	11.5	11.7	15.3	0.347	0.19	1.02
01/08/2012	Agressive	7.1	7.97	0.87	8.84	287	11.9	11.2	14.3	0.326	0.22	0.94
Moyenne		7.05	7.99	0.94	7.65	285.00	12.06	11.72	17.66	0.40	0.17	0.98

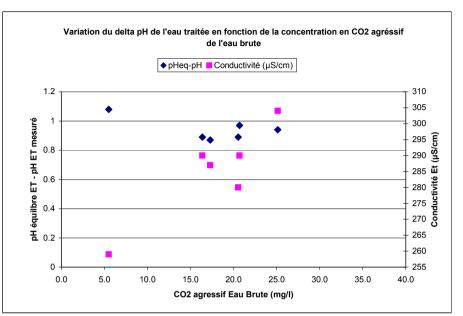
<u>Légende</u>

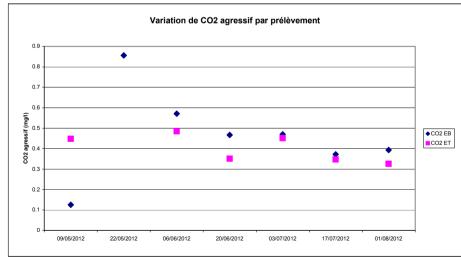
Conductivité TH TAC
 < 200 μS/cm</td>

 < 8 ° F</td>

 de 0.7 à 1.3
 < 1.7 ou > 1.3


 Non corrosive
 Corrosive


 < 0.2</td>
 de 0.2 à 0.4


Indice Leroy Indice Larson

< 0.2</p>
Pas de tendance à la corrosion
de 0.2 à 0.4
Faible tendance
Légère tendance

SAINTE FEREOLE

SAINTE FORTUNADE

Eau brute STE FORTUNADE	Туре	pH terrain	pHs	pHs-pH	2pH-pHeq	Conductivit é (µS/cm)	TH (F)	TAC (℉)	CO2 agressif (mg/l)	CO2 agressif (mM/l)
10/05/2012	Agressive	6.1	8.05	1.95	10	82	1.133	2.3	40.22	0.914
23/05/2012	Agressive	6	9.93	3.93	13.86	70	1.758	2.2	48.53	1.103
14/06/2012	Agressive	6.1	9.86	3.76	13.62	67	1.7	2.5	44.13	1.003
21/06/2012	Agressive	6.1	9.87	3.77	13.64	79	1.8	2.3	40.70	0.925
04/07/2012	Agressive	6.4	8.64	2.24	10.88	67	1.7	1.8	15.49	0.352
17/07/2012	Agressive	6.5	9.95	3.45	13.4	61	1.7	2.2	15.22	0.346
02/08/2012	Agressive	6.52	9.93	3.41	13.34	66	1.7	2.1	13.64	0.31
Moyenne		6.25	9.46	3.22	12.68	70.29	1.64	2.20	31.13	0.71

de 0.4 à 0.5 Légère tendance

Eau traitée STE FORTUNADE	Туре	pH terrain	pHeq	pHeq-pH	2pH-pHeq	Conductivit é (µS/cm)	TH (℉)	TAC (°F)	CO2 agressif (mg/l)	CO2 agressif (mM/l)	Indice de Larson	Indice de Leroy
10/05/2012	Agressive	7.4	8.1	0.70	8.8	238	10.491	10.4	6.4	0.146	0.08	0.95
23/05/2012	Agressive	7.4	8.11	0.71	8.82	228	10.45	11	7.0	0.159	0.07	1.01
14/06/2012	Agressive	7.4	8.04	0.64	8.68	219	10.8	12.1	7.4	0.169	0.07	1.13
21/06/2012	Agressive	7.3	8.06	0.76	8.82	232	11	10.7	8.8	0.201	0.07	0.97
04/07/2012	Agressive	7.3	8.04	0.74	8.78	240	10.6	10.6	8.4	0.192	0.08	0.99
17/07/2012	Agressive	7.25	8.05	0.80	8.85	222	10.5	10.6	9.7	0.22	0.07	1.01
02/08/2012	Agressive	7.25	8.08	0.83	8.91	254	9.5	10.7	9.9	0.226	0.08	1.11
Moyenne		7.33	8.07	0.74	8.81	233.29	10.48	10.87	8.25	0.19	0.07	1.02

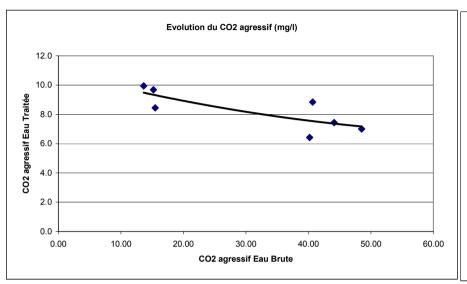
<u>Légende</u>

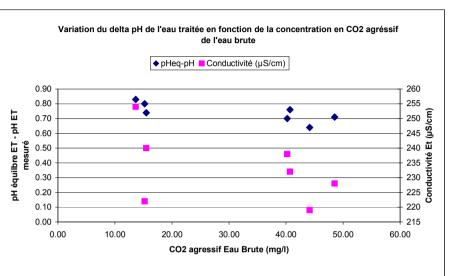
Conductivité TH TAC Indice Leroy

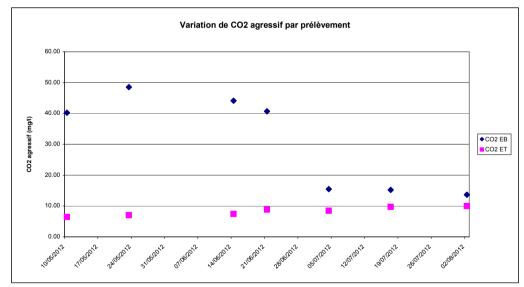
 <200 µS/cm</td>

 <8 ° F</td>

 de 0.7 à 1.3
 <1.7 ou > 1.3


 Non corrosive
 Corrosive

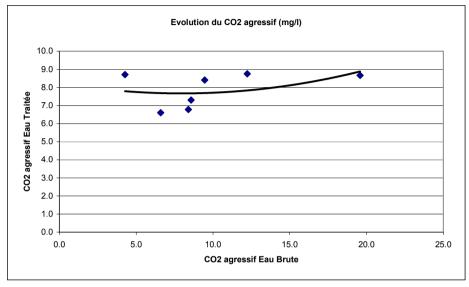

 <0.2</td>
 de 0.2 à 0.4

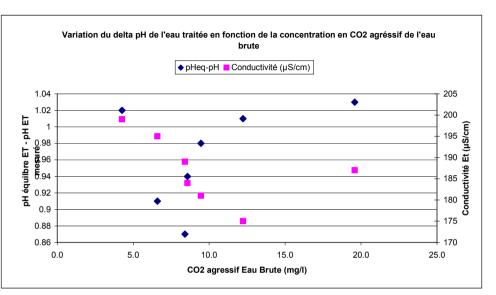

 Pas de tendance à la corrosion
 Faible tendance

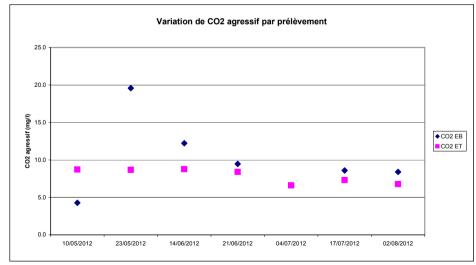
Indice Larson

SAINTE FORTUNADE

SAINT FREJOUX


Eau brute ST FREJOUX	Туре	pH terrain	pHs	pHs-pH	2pH-pHeq	Conductivit é (µS/cm)	TH (°F)	TAC (℉)	CO2 agressif (mg/l)	CO2 agressif (mM/l)
10/05/2012	Agressive	6.7	9.5	2.8	12.3	48	0.804	1	4.3	0.097
23/05/2012	Agressive	6	8.7	2.7	11.4	37	0.754	0.9	19.6	0.445
14/06/2012	Agressive	6.3	8.99	2.69	11.68	32	0.73	1.1	12.2	0.278
21/06/2012	Agressive	6.3	9.38	3.08	12.46	44	0.78	0.9	9.5	0.215
04/07/2012	Agressive	6.4	9.65	3.25	12.9	38	0.76	0.8	6.6	0.15
17/07/2012	Agressive	6.4	9.51	3.11	12.62	33	0.79	1	8.6	0.195
02/08/2012	Agressive	6.5	9.39	2.89		38	0.76	1.2	8.4	0.191
Moyenne		6.37	9.30	2.93	12.23	38.57	0.77	0.99	9.87	0.22
Moyenne phas	se 1	6.34	9.24	2.90	12.15	39.80	0.77	0.94	10.43	0.24
Moyenne phas	se 2	6.45	9.45	3.00	12.62	35.50	0.78	1.10	8.49	0.19


Eau traitée ST FREJOUX	Туре	pH terrain	pHeq	pHeq-pH	2pH-pHeq	Conductivit é (µS/cm)	TH (F)	TAC (°F)	CO2 agressif (mg/l)	CO2 agressif (mM/l)	Indice de Larson	Indice de Leroy
10/05/2012	Agressive	7.3	8.32	1.02	9.34	199	8.662	9	8.7	0.198	0.05	0.98
23/05/2012	Agressive	7.3	8.33	1.03	9.36	187	8.662	8.9	8.7	0.197	0.04	1.02
14/06/2012	Agressive	7.3	8.31	1.01	9.32	175	8.9	8.6	8.8	0.199	0.05	0.96
21/06/2012	Agressive	7.3	8.28	0.98	9.26	181	9	8.6	8.4	0.191	0.05	0.96
04/07/2012	Agressive	7.4	8.31	0.91	9.22	195	8.8	8.5	6.6	0.15	0.05	0.97
17/07/2012	Agressive	7.4	8.34	0.94	9.28	184	8.8	8.8	7.3	0.166	0.05	0.98
02/08/2012	Agressive	7.4	8.27	0.87	9.14	189	8.6	9	6.8	0.154	0.05	1.03
Moyenne		7.34	8.31	0.97	9.27	187.14	8.77	8.77	7.89	0.18	0.05	0.99
Moyenne phas	se 1	7.32	8.31	0.99	9.30	187.40	8.80	8.72	8.23	0.19	0.05	0.98
Moyenne phas	se 2	7.40	8.31	0.90	9.21	186.50	8.70	8.90	7.04	0.16	0.05	1.01


<u>Légende</u>

Conductivité	< 200 μS/cm		
TH TAC	<8°F		
	de 0.7 à 1.3	< 1.7 ou > 1.3	
Indice Leroy	Non corrosive	Corrosive	
	< 0.2	de 0.2 à 0.4	de 0.4 à 0.5
Indice Larson	Pas de tendance à la corrosion	Faible tendance	Légère tendance

SAINT FREJOUX

SAINT MAMET LA SALVETAT

Calcul de l'équilibre calco-carbonique à partir des résultats laboratoire*

Eau brute	pH labo (1)	pH équilibre (2)	ΔpH (2)-(1)	Caractère*	CO ₂ agressif (mM/l)	CO ₂ agressif (mg/l)
26/07/2012	7.2	9.45	2.25	Agressif	0.031	1.364
09/08/2012	7.3	9.45	2.15	Agressif	0.024	1.056

AKDOLIT KARBONAT C	pH labo (1)	pH équilibre (2)	ΔpH (2)-(1)	Caractère*	CO ₂ agressif (mM/l)	CO₂ agressif (mg/l)
26/07/2012	7.85	7.93	0.08	Equilibre	0.008	0.352
09/08/2012	8.05	7.97	-0.08	Equilibre	-0.006	-0.264

NEUTRALITE	pH labo (1)	pH équilibre (2)	ΔpH (2)-(1)	Caractère*	CO ₂ agressif (mM/l)	CO ₂ agressif (mg/l)
26/07/2012	8	7.89	-0.11	Equilibre	-0.011	-0.484
09/08/2012	8.1	8.1	0	Equilibre	0	0

^{*} L'équilibre calco-carbonique n'est pas forcément atteint en conditions réelles car les analyses en laboratoire ne sont pas représentatives de la réalité (pH et température différents). Ces résultats sont donnés à titre indicatif et ne permettent pas de conclure quant au caractère agressif ou non de l'eau en sortie de traitement de la station de Saint Mamet.

ANNEXE V:

CALCUL DES CONSOMMATIONS DE REACTIF

ETUDE DE SUBSTITUTION DU CALCAIRE MARIN: COMPARATIF DES CONSOMMATIONS DE MATERIAUX

Densité (g/l)
Matériau filtrant : Filtracarb L-SB 1300

Akdolit hydro-calcit C 1300
Neutralite 1100
Algafiltre Ca 1300

	Nombre filtre	Surface (m2)	Delta ép (c	oaisseur m)		mation v tériau (m		quanti	nsomma ité matér n du déb (g/m3)	iau en	matéria	nmation o u en fond it d'ET (g	tion du	CO2 ag	•	Conso matériau g par g/CO2	Conso quantité matériau LPLWin	Nombre jours	Delta conso EB (m3)	Delta conso ET (m3)	Qmoyen EB (m3/j)	Qmoyen ET (m3/j)
_			min	max	min	max	moy	min	max	moy	min	max	moy g/m3	moy EB	moy ET	neutralisé	(g/m3)		, ,	, ,		
Sites sélectionnés pe	our essais	\$			_			_			_							_				
Egletons																						
avant injection CO2	1	8.4	0	·	0.0000	0.0060		0.0	31.8	15.9		33.4	16.7	21.5	11.0	1.5	55.0	42	10289	9820	244.98	233.81
après injection CO2	1	8.4	6	6	0.0174	0.0174	0.0174	96.6	96.6	96.6	93.3	93.3	93.3	66.1	11.6	1.8	32.0	29	6785	7020	233.97	242.07
Saint Sylvain	2																					
Neutralite	1	4	7.5	7.5	0.0048		0.0048	41.3		41.3	54.4		54.4	7.04	5.62	29.1	18	63	7997	7167	126.94	113.76
Akdolit hydro-calcit CG	1	4	7.5	7.5	0.0048		0.0048	48.8		48.8	54.4		54.4	7.04	2.42	10.6	18	63	7997	7167	126.94	113.76
Meilhards	2																					
Neutralite	1	4	4	11	0.0019	0.0052	0.0036				21.6	59.4	40.5	17.1	3.38	2.9	43.0	84		8154		97.07
Algafiltre Ca	1	4	7	9	0.0033	0.0043	0.0038				44.6	57.4	51.0	17.1	3.00	3.6	43.0	84		8154		97.07
Ladignac	1	11.04	11	16	0.0145	0.0210	0.0177				67.3	97.9	82.6	30.5	19.8	7.7		84		23454		279.21
Sites sélectionnés pe	our suivi										ì											
Ste Fortunade	1	7.5	11	10	0.0098	0.0089	0.0094				105.6	96.0	100.8	31.13	8.25	4.4	78.0	84		10161		120.96
St Fréjoux																		84	8351	8383	99.4166667	99.797619
avant recharge	1	3	6	8	0.0033	0.0044	0.0038	43.1	57.4	50.2	42.9	57.1	50.0	10.4	8.2	22.8		55	5433	5460	98.78	99.27
apres recharge	1	3	2	3	0.0038	0.0056	0.0047	53.5	80.2	66.9	53.5	80.2	66.9	8.5	7.0	46.1		16	1458	1458	91.13	91.13
St Pardoux	2	22.5	10	12													44.7	70	69823	69091	997.47	987.01
Lavert	1	10.5	20	16	0.0250	0.0200	0.0225	109.9	87.9	98.9	101.3	81.1	91.2	19.9	17.7	41.4	40	84	24849	26945	295.82	320.77
Ste Féréole	1	7.75	4	3	0.0037	0.0028	0.0032	33.6	25.2	29.4	26.9	20.2	23.5	20.5	17.7	8.4	42	84	11981	15000	142.63	178.57

ANNEXE V=:

COMPTES RENDUS DES INTERVENTIONS DE RECONVERSION DES SITES

Agence de l'eau Adour-Garonne

Etude de reconversion des unités de distribution de reminéralisation fonctionnant par filtration sur matériau calcaire

Compte rendu des interventions de vidange et remplissage des filtres de reminéralisation du 16, 17, 18 et 24/04/2012

Mise à jour du 25/04/2012

Date d'intervention	Lieu	Intervention
16/04/2012	Rosiers d'Egletons	Vidange
17/04/2012	Rosiers d'Egletons	Remplissage
17/04/2012	Meilhards	Vidange
18/04/2012	Ladignac le Long	Vidange et remplissage
24/042012	Meilhards	Remplissage

Station de « Croix du Bourg » - Commune des ROSIERS D'EGLETONS

Exploitant

Syndicat des eaux de Montaignac - Rosiers d'Egletons

Vidange du filtre

La vidange de la neutralite de l'unité de Croix du Bourg a été réalisée le 16/04/2012 à l'aide d'une aspiratrice.

Avant intervention, le filtre a préalablement été lavé (cycle de lavage traditionnel) et vidé de son eau par l'exploitant.

La couche de graviers plus grossiers en fond de filtre a été laissée en place.

Il est apparu pendant la vidange qu'une épaisseur de boues s'été formée au fil des ans entre la neutralite et le gravier de fond. L'accumulation de cette boue s'explique par le procédé de filtration de type « de bas en haut » du filtre. Les matières en suspension contenues dans l'eau brute se sont accumulées en entrée de filtre et n'ont pas pu être évacuées par les lavages à l'eau simple pourtant réalisés tous les 2-3 jours.

Une douzaine de tonnes de neutralite ont été évacuées et stockées devant l'usine dans l'attente d'une évacuation.

> Remplissage avec le nouveau matériau de filtration

Le produit de substitution choisi pour cette usine est le Filtracarb L-SB. La livraison a été effectuée en vrac le 17/04/2012 par camion citerne : 13,2 tonnes ont été livrées.

Malgré les conseils du fournisseur de Flitracarb, il est apparu à la livraison qu'un conditionnement en <u>vrac n'était pas adapté pour le remplissage d'un filtre ouvert.</u>

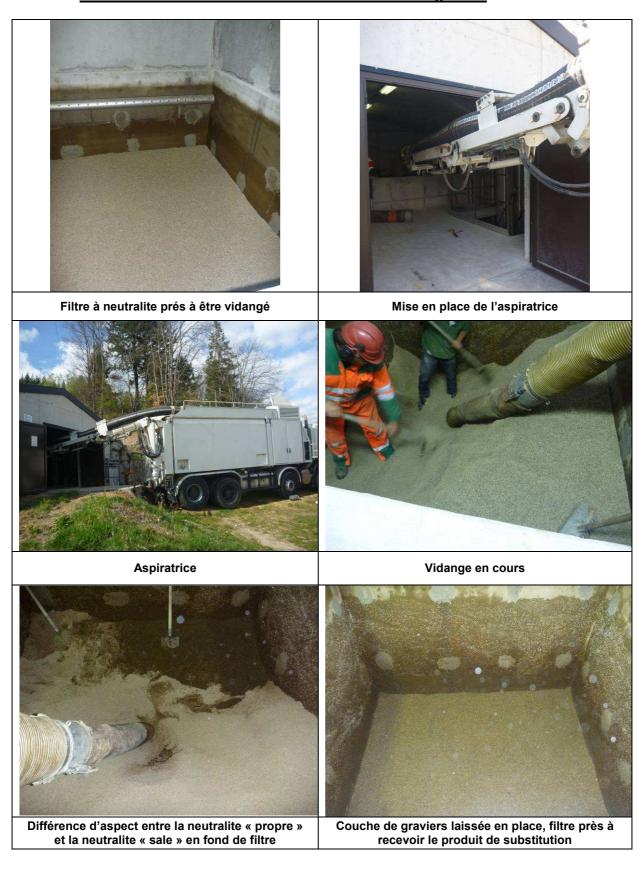
Le tuyau de vidange du camion citerne par lequel le matériau est envoyé sous pression <u>doit</u> normalement être raccordé à un filtre fermé.

Le déchargement du Filtracarb L-SB a finalement été possible mais n'a pas pu se faire dans les conditions optimales.

De plus, le remplissage du filtre a créé une quantité de poussière calcaire très importante, qui s'est répandue dans toute l'usine et sur tous les équipements. Quasiment une journée de travail a été nécessaire à l'exploitant pour nettoyer le local est évacuer plusieurs dizaines de kilos de poussières.

> Remise en eau du filtre

Lors de la première mise en eau, l'aspect du filtre très laiteux a confirmé la présence d'une grande quantité de fines dans le produit.


Une dizaine de nettoyages à l'eau ont été nécessaires pour retrouver un aspect limpide de l'eau en sortie du filtre.

Afin de désinfecter le filtre avant remise en route, un trempage d'une nuit dans de l'eau chlorée a été réalisé.

La neutralisation vers distribution a pu être remise en route le 19/04/2012.

Les premières analyses réalisées par l'exploitant montrent des résultats concluants.

Photos de l'intervention sur l'usine de Rosiers d'Egletons

Déchargement de la neutralite évacuée

Aspiratrice durant le déchargement

Remplissage du filtre par vrac sous pression avec création d'un nuage de poussière

Dépôts de poussière dégagée par le Filtracarb L-SB

Poussière au sol après remplissage

Aspect laiteux de l'eau après première remise en eau du filtre

Station du « Bois de Boudet » - Commune de MEILHARDS

Exploitant

Commune de Meilhards

> Vidange du filtre

La vidange de la neutralite de l'unité de Bois de Boudet a été réalisée le 17/04/2012 à l'aide d'une aspiratrice.

Avant intervention, le filtre a préalablement été lavé (cycle de lavage traditionnel) et vidé de son eau par l'exploitant.

La vidange s'est faite sans encombre en moins de deux heures.

La neutralite évacuée a été stockée sur place. L'exploitant souhaite la conserver pour une réutilisation en gravier ou remblai.

> Remplissage avec le nouveau matériau de filtration

Le produit retenu pour cette usine est l'Algafiltre Ca. Dix big-bag de 600kg, soit 6 tonnes de calcaire ont été livrées le 24/04/2012.

La recharge s'est faite sans encombre.

> Remise en eau du filtre

Lors de la première mise en eau, l'aspect du filtre très laiteux a confirmé la présence d'une grande quantité de fines dans le produit.

Deux nettoyages à l'eau et à l'air ont été nécessaires pour retrouver un aspect limpide de l'eau en sortie du filtre.

Afin de désinfecter le filtre avant remise en route, un trempage d'une nuit dans de l'eau chlorée a été réalisé.

Photos de l'intervention sur l'usine de Meilhards

Station des Roches Blanches - Commune de LADIGNAC LE LONG

Exploitant

Commune de Ladignac le Long

> Vidange du filtre

La vidange de la neutralite de l'unité des Roches Blanches a été réalisée le 18/04/2012 à l'aide d'une aspiratrice.

Avant intervention, le filtre a préalablement été lavé (cycle de lavage traditionnel) et vidé de son eau par l'exploitant.

La couche de graviers plus grossiers en fond de filtre a été laissée en place. Compte tenu de la fine épaisseur de cette couche de graviers et de la puissance de l'aspiratrice, le fond du filtre n'a pas pu être « proprement » nettoyé de toute la neutralite affleurant le gravier. Une couche résiduelle de neutralite (<1cm) a dû être laissée en fond de filtre afin de conserver intact le gravier de protection.

La neutralite évacuée a été stockée sur place. L'exploitant souhaite la conserver pour une réutilisation en gravier ou remblai.

> Remplissage avec le nouveau matériau de filtration

Le produit de substitution choisi pour cette usine est le Filtracarb L-SB. La livraison en bigbag a été effectuée le 18/04/2012. 18 tonnes ont été réceptionnées et vidées dans le filtre. La recharge s'est faite sans encombre.

> Remise en eau du filtre

Lors de la première mise en eau, l'aspect du filtre très laiteux a confirmé la présence d'une grande quantité de fines dans le produit.

Deux nettoyages à l'eau et à l'air ont été nécessaires pour retrouver un aspect limpide de l'eau en sortie du filtre.

Afin de désinfecter le filtre avant remise en route, un trempage d'une journée et demie dans de l'eau chlorée a été réalisé.

La neutralisation vers distribution a pu être remise en route le 28/04/2012.

Les premiers contrôles réalisés par l'exploitant montrent un fonctionnement concluant.

> Photos de l'intervention sur l'usine de Ladignac le Long

Agence de l'eau Adour-Garonne

Etude de reconversion des unités de distribution de reminéralisation fonctionnant par filtration sur matériau calcaire

Compte rendu des interventions de vidange et remplissage des filtres de reminéralisation du 02 et 03/05/2012

Date d'intervention	Lieu	Intervention
02/05/2012	Saint Mamet la Salvetat	Vidange
03/05/2012	Saint Mamet la Salvetat	Remplissage

Station de « Pont de Lascombes» - Commune de SAINT MAMET LA SALVETAT

Exploitant

Commune de Saint Mamet la Salvetat

> Vidange du filtre

La vidange de la neutralite de l'unité du Pont de Lascombes a été réalisée le 02/05/2012 à l'aide d'une hydrocureuse.

L'usine possède deux filtres fermés sous pression, un seul des deux filtres a été vidé, l'autre a été conservé comme filtre témoin.

Comme l'avait déjà signalé l'exploitant lors de la première visite, et malgré des lavages très réguliers, une couche de vase est présente sur le sommet des filtres, au niveau de l'arrivée d'eau brute. Ce problème pourrait être en partie expliqué par un sous-dimensionnement du système d'évacuation des eaux de lavage en sortie des filtres qui limite le débit de nettoyage.

Le volume de neutralite à évacuer avait initialement été estimé à une dizaine de mètres cubes. A l'ouverture du filtre il est apparu que moins de 5m³ de matériau restaient dans le filtre (contre 10m³ dans le deuxième). La différence du volume de neutralite restant n'a pour l'instant pas pu être expliquée.

L'intégralité du premier filtre a été vidangée par l'hydrocureuse. La neutralite vidangée a été évacuée du site par la société d'hydrocurage.

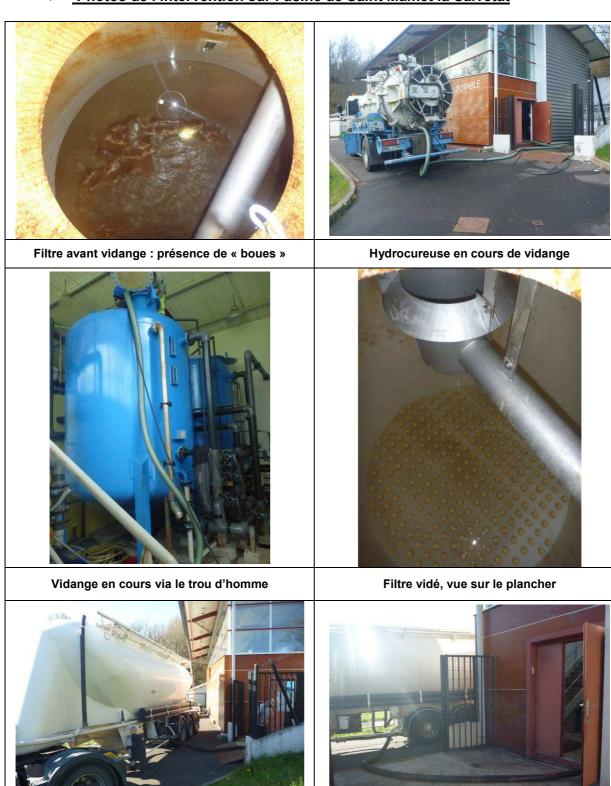
> Remplissage avec le nouveau matériau de filtration

Le produit retenu pour cette usine est l'Akdolit C 1-2 (ou Akdolit Karbonat). 20,6 tonnes de calcaire ont été livrées par camion citerne le 03/05/2012, soit environ 13,7 m³.

Ce volume a été calculé sur la base des données fournies par l'exploitant, à savoir un volume initial de neutralite de 16m³.

Or il est apparu que le volume utile réel du filtre capable d'accueillir le calcaire était inférieur à 13m³. Une partie du chargement d'Akdolit C n'a pas pu être mis en place. Un volume de calcaire compris entre 1 et 2m³ a dû être stocké sur place à proximité de l'usine.

> Remise en eau du filtre


Lors de la première mise en eau, l'aspect du filtre très laiteux a confirmé la présence d'une grande quantité de fines dans le produit.

L'équivalent de deux ou trois nettoyages à l'eau+air ont été nécessaires pour retrouver un aspect limpide de l'eau en sortie du filtre.

Afin de désinfecter le filtre avant remise en route, un trempage d'une nuit dans de l'eau chlorée a été réalisé.

La neutralisation vers distribution a été remise en route dans les jours suivants.

Photos de l'intervention sur l'usine de Saint Mamet la Salvetat

Préparation de la recharge

Recharge en cours

Agence de l'eau Adour-Garonne

Etude de reconversion des unités de distribution de reminéralisation fonctionnant par filtration sur matériau calcaire

Compte rendu des interventions de vidange et remplissage des filtres de reminéralisation du 23/05/2012

Date d'intervention	Lieu	Intervention
23/05/2012	Saint Sylvain	Remplissage

Station de « Saint Bonnet Elvert» - Commune de SAINT SYLVAIN Exploitant Syndicat des eaux des 2 vallées

> Vidange du filtre

Les deux filtres ont été vidangés en 2011 par l'exploitant pour réaliser des travaux d'étanchéité.

> Remplissage avec le nouveau matériau de filtration

Le produit retenu pour cette usine est l'Akdolit Hydro-Calcite. 6,5 tonnes de calcaire ont été livrées en big bag au siège du syndicat, soit environ 5 m³.

Deux problèmes se posaient pour cette station :

- La neutralite, évacuée en 2011 et stockée dans les entrepôts du syndicat, devait également être remise en place.
- Les filtres se trouvent dans un bâtiment couvert, avec des ouvertures trop étroites pour faire rentrer un engin élévateur capable de lever les big-bags de calcaire au dessus des filtres.

Le 23/05/2012, les big-bags ont été transportés à l'aide d'une chargeuse et d'un camion plateau sur le site de l'unité de traitement de « St Bonnet Elvert ».

Toujours à l'aide de la chargeuse, les big-bags ont été versés dans une benne adossée au mur de l'usine. A l'aide d'une vis à grain, le calcaire a été transféré de la benne aux filtres, par les ouvertures (fenêtres) situées à l'aplomb de chaque filtre.

Lors de la recharge, les filtres étaient en eau. Cela a permis d'éviter d'éventuel dégagement de poussière lors du transfert de produit.

Remise en eau du filtre

A la fin de la recharge, l'aspect des filtres très laiteux a confirmé la présence d'une grande quantité de fines dans les produits.

L'équivalent de deux ou trois nettoyages à l'eau+air ont été nécessaires pour retrouver un aspect limpide de l'eau en sortie de filtre.

L'Akdolit Hydro-Clacit est un clacaire de synthèse très réactif, qui peu provoquer des montées importantes de pH à la mise en route. Lors de la remise en eau du filtre, le pH mesuré était supérieur à 9. Le fournisseur de ce calcaire préconise généralement un rodage de 2 à 4 semaines pour stabiliser le pH avant remise en route.

Le protocole de rodage pour Saint Sylvain a été le suivant :

	•	mise en place des 5m3 de calcaire en une fois,
<u>П</u>	•	lavage efficace à l'eau et à l'air,
Z	•	désinfection et mise en eau,
SEMAINE	•	mise en vidange pendant une semaine : l'arrivée d'eau est laissée en partie ouverte mais la sortie du filtre fermée, le filtre est alimentée par le sur plus de production des sources,
	•	lavage efficace à l'eau et à l'air,
E 2	•	contrôle du pH en sortie de filtre,
SEMAIN	•	remise progressive en distribution (filtration de 80% du débit sur le filtre à neutralite et 20% sur l'akdolit) pendant environ une semaine,
SE	•	contrôle du pH en sortie de filtre,
	•	remise en service totale.

A l'issu de deux semaines, les résultats en sortie du filtre à Akolit Hydro-Calcit étaient conformes aux références de qualité des eaux destinées à la distribution.

Afin de désinfecter le filtre avant remise en route, un trempage d'une nuit dans de l'eau chlorée a été réalisé.

La neutralisation vers distribution a été remise en route dans les jours suivants.

Photos de l'intervention sur l'usine de Saint Sylvain

Transfert des big-bags par chargeuse

Transfert dans la benne puis vers le filtre par la vis à grain

Vis à grain (vue extérieure)

Vis en grain (vue intérieure)

Installation pour recharge (vue d'ensemble)

Filtre Akdolit après remplissage : eau laiteuse

Premier lavage (à g. Akdolit / à d. Neutralite)

Rejet des eaux de lavage vers bassin d'infiltration

Cycle de lavage air+ eau

Filtres clarifiés