
Restauration du saumon atlantique sur le bassin de la Dordogne : suivis des habitats et du recrutement naturel

Année 2017

D. Clave; I. Caut

RESUME

Cette année encore, les géniteurs qui ont réussi à atteindre les frayères et à se reproduire sont en nombre insuffisant pour assurer la pérennité de la population sans soutien des effectifs. De plus, des problèmes subsistent pour accéder aux zones de reproduction et moins de la moitié des saumons qui pénètrent l'axe Dordogne parviennent à atteindre les zones de reproduction.

Néanmoins, les suivis des zones non-alevinées ont permis de caractériser la productivité de la reproduction naturelle. Les échantillonnages par pêche électrique ont mis en avant, pour 2017, de bons résultats de l'indicateur d'abondance, reflet d'un faible niveau de perturbation hydrologique du 15 mars au 15 juin 2017. Des éclusées de faible amplitude ont été relevées jusqu'à mi-avril, avec des fréquences de baisses de débit qui figurent parmi les plus faibles sur la Dordogne depuis 15 ans à cette même période. Les baisses de débit se sont faites avec des gradients de baisse proches des variations naturelles.

Globalement, les mesures mises en place dans le cadre de la convention de gestion des débits ne sont pas aussi satisfaisantes pour la Maronne que pour la Dordogne. Pourtant, comme en témoignent les résultats 2011, 2013 et maintenant 2017, le potentiel de cette rivière en termes de grossissement et de production de juvéniles est très élevé, en dépit d'un milieu profondément modifié et artificialisé.

Il est avéré que les habitats amont où l'enjeu pour le saumon est le plus fort (Dordogne et Maronne) sont de meilleure qualité et plus productifs depuis 2008 avec l'application de « la convention éclusée » (Epidor, EDF, AEAG, Etat) et particulièrement lorsque aucune éclusée n'est réalisée durant la période de vulnérabilité des salmonidés.

La qualité des habitats dulçaquicoles pour le saumon est d'une importance capitale pour la réussite du plan de restauration sur la Dordogne. Les habitats doivent être accessibles et de qualité, afin de permettre l'accomplissement du cycle biologique du saumon atlantique naturellement. C'est pourquoi la reconquête d'habitats à haute valeur biologique, en réduisant autant que nécessaire l'impact de l'hydroélectricité sur le milieu ou en restaurant des zones de reproduction et de grossissement des juvéniles, est un challenge d'envergure, qui se doit d'être mené à bien pour l'avenir de la population de saumon atlantique et de la rivière Dordogne.

Mots clés : saumon atlantique, reproduction naturelle, bassin Dordogne.

SOMMAIRE

RESUME]
SOMMAIRE	
TABLE DES ILLUSTRATIONS	
INTRODUCTION	
1 ZONE D'ETUDE	
2 HYDROLOGIE DU BASSIN VERSANT	
3 TEMPERATURES SUR LE BASSIN	
4 LIBRE CIRCULATION SUR LE BASSIN	
4.1 Franchissement des obstacles du Bergeracois	8
5 SUIVI DU RECRUTEMENT NATUREL PAR PECHES ELECTR	IQUES10
5.1 OBJECTIFS 5.2 MOYENS MIS EN ŒUVRE 5.3 ECHANTILLONNAGE : SITES PROSPECTES ET TECHNIQUE 5.4 RESULTATS 5.4.1 Dordogne 5.4.2 La Maronne 5.4.3 La Souvigne	
DISCUSSION ET CONCLUSION	26
BIBLIOGRAPHIE	27
ANNEXES	29

TABLE DES ILLUSTRATIONS

Figure 1 : Zones à enjeu pour le saumon atlantique dans la Dordogne et zone inaccessible suite à la construction
de barrages infranchissables (fonds de carte Epidor)2 Figure 2 : Courbe des débits journaliers moyens (Qjm) et histogramme des débits mensuels mesurés (Qmm) de
la Dordogne à Argentat en 2017 (source : Banque Hydro)
Figure 3: Courbe des débits journaliers moyens (Qjm) et histogramme des débits mensuels mesurés (Qmm) de la
Dordogne à Tulle en 2017 (source : Banque Hydro)4
Figure 4 : Distribution des températures (°C) annuelles sur les stations de mesure du bassin Vézère-Corrèze et
Dordogne
Figure 5 : Histogramme des effectifs de saumons comptabilisés à Tuilières (en haut) et à Mauzac (en bas) en
fonction de l'âge des saumons8
Figure 6 : Localisation des sites prospectés par pêches électriques dans le cadre du suivi du recrutement de la
reproduction naturelle
Figure 7 : Chronique d'abondance en salmonidés 0+ sur les radiers « historiques » de 2002 à 2005 (barres
vertes) et sur tous les radiers de 2006 à 2017 (barres bleues)15
Figure 8 : Indicateur du recrutement (ou abondance relative) en salmonidés pour 100 frayères sur le tronçon
« barrage du Sablier-Saulières » (2002-2005, 3 radiers/2006-2017, 9 radiers)
Figure 9 : Histogramme des densités de salmonidés 0+ pour les stations de l'axe Maronne19
Figure 10 : Histogramme des densités de salmonidés 0+ pour la station du Pont de l'Hospital (Mar1) de 2002 à
201721
Figure 11 : Chronique de l'évolution des densités de salmonidés 0+ et du nombre de frayères au pont de
l'Hospital (Mar 1) de 2002 à 201722
Figure 12 : Chronique de l'évolution du nombre de frayères comptabilisées dans la Maronne 2000 à 2017 en
aval de la digue de la Broquerie et dans le TCC22
Figure 13 : Indicateur de recrutement des salmonidés (densités truites et saumons) sur la station du pont de
l'Hospital pour 100 frayères comptabilisées sur la Maronne (2002 à 2017)23
Tableau 1 : Caractéristiques des données annuelles de température sur 16 stations des bassins Dordogne et
Corrèze
Tableau 2 : Chronique de l'effort d'échantillonnage annuel sur la Dordogne (zone non-repeuplée)11
Tableau 3 : Taille moyenne (mm) des salmonidés échantillonnés en 2017 dans la Dordogne en zone non-
repeuplée (salmonidés nés en 2017, dits 0+).
Tableau 4 : Indices d'abondance en salmonidés calculés sur les radiers prospectés (2002-2017)14
Tableau 5 : Chronique de l'effort d'échantillonnage annuel sur la Maronne (Mar1 le site référence)17
Tableau 6 : Effectifs et tailles moyennes des saumons atlantiques échantillonnés en 2017 dans la Maronne en
zone non-repeuplée
Tableau 7 : Effectifs et tailles moyennes des truites fario échantillonnées en 2017 dans la Maronne en zone non-
repeuplée
Tableau 8 : Chronique des densités de juvéniles relevées sur les stations de pêche de la Maronne20
Tableau 9 : Effectifs et tailles moyennes des truites fario et saumons atlantiques échantillonnés en 2017 dans la
Souvigne au pont de Chadiot (SOU2).

INTRODUCTION

La restauration du saumon atlantique dans le bassin de la Dordogne passe par un soutien de la population grâce aux alevinages. Son maintien ne peut être envisagé à court terme et avec les effectifs actuels sans repeuplement. Cependant, chaque année, des géniteurs se reproduisent naturellement sur la partie amont accessible du bassin. Cette production naturelle contribue au maintien de la population et à son accroissement. Actuellement, elle est limitée par de multiples pressions environnementales. Un des enjeux forts du plan de restauration du saumon atlantique est d'améliorer la qualité des habitats à salmonidés pour en optimiser la production et continuer d'amplifier la contribution de la reproduction naturelle aux effectifs de saumons migrant sur le bassin.

Toutes les actions menées pour l'amélioration de la qualité du milieu bénéficient au plan de restauration du saumon atlantique et réciproquement. Les actions portées par Migado dans le cadre de la restauration de l'espèce sont de natures diverses. En complément du soutien des effectifs, les suivis biologiques, les relevés des paramètres physiques des cours d'eau, la veille concernant la libre circulation et l'impact des régimes hydrauliques sur les différents stades biologiques du saumon sont autant d'opérations qui permettent d'acquérir des données essentielles à la connaissance de l'espèce sur le bassin. De plus, ces données permettent de mieux comprendre les nuisances que l'espèce subit, quelles sont les réponses à y apporter et quelles améliorations sont effectives.

Dans le présent rapport, seront présentées les données acquises lors des suivis biologiques ou des dispositifs de franchissement, mais également lors des suivis des conditions environnementales.

1 ZONE D'ETUDE

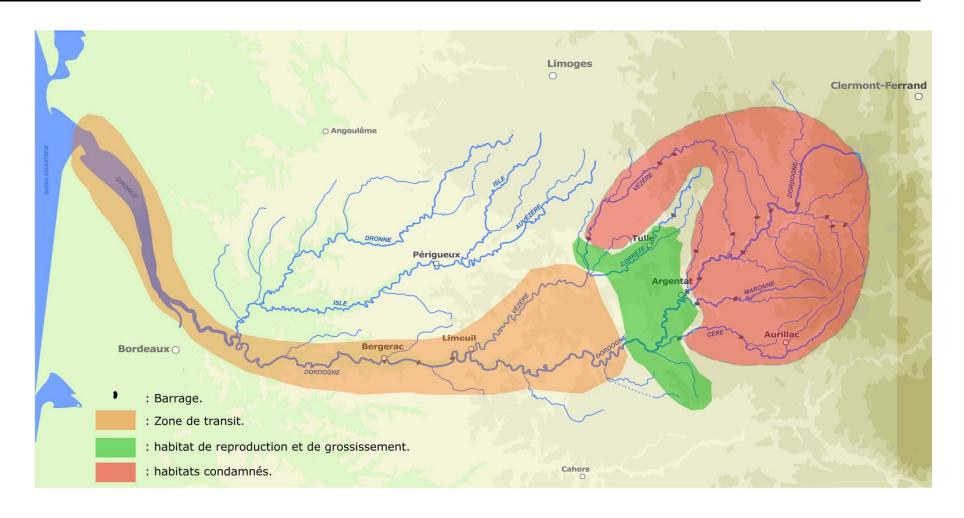


Figure 1 : Zones à enjeu pour le saumon atlantique dans la Dordogne et zone inaccessible suite à la construction de barrages infranchissables (fonds de carte Epidor)

Le bassin de la Dordogne (figure 1) abritait autrefois une multitude de zones propices à accueillir toutes les espèces de migrateurs et particulièrement le saumon atlantique. Ces zones se sont progressivement réduites avec la construction des barrages. Les habitats les plus amont (zone rouge) sont même aujourd'hui considérés comme définitivement condamnés pour l'espèce depuis la construction des grands barrages hydroélectriques. Les sous-bassins de la Dronne et de l'Isle ont un faible intérêt du fait de la multitude d'ouvrages à franchir avant de rejoindre les habitats les plus favorables.

Actuellement, l'aire où les enjeux sont majeurs pour le saumon atlantique (zone verte) s'étend sur une petite partie des sous-bassins Vézère/Corrèze/Cère/Bave et sur l'axe Dordogne. C'est dans cette zone et là uniquement que les minima requis en termes de sédiments, de température et de régime hydraulique sont réunis pour permettre l'accomplissement des phases dulcicoles du cycle biologique du saumon. Toutes ces zones ne présentent pas des caractéristiques optimales : certaines sont dégradées, d'autres sont difficilement accessibles ou subissent l'impact d'activités anthropiques. L'objectif des opérations mises en œuvre par le plan saumon est d'améliorer autant que nécessaire la fonctionnalité de ces zones. En effet, une productivité maximale des zones de reproduction et de croissance des juvéniles est essentielle pour la réussite du plan saumon.

Objectifs de qualité des zones de reproduction et de grossissement :

- Substrat benthique des cours d'eau meubles et majoritairement constitués de graviers et de galets ;
- Température conforme à la zonation truite (Huet);
- Pas d'éclusées ou de transparence lors des phases de vie précoces ;
- Maintien en eau maximal des surfaces d'habitat pour la fraie et le grossissement.

Cependant, pour que les habitats de reproduction soient utilisés ou réellement productifs, les géniteurs doivent pouvoir les atteindre et les juvéniles les quitter pour rejoindre l'océan. La zone de transit (zone orange) conditionne aussi la réussite du cycle biologique du saumon.

Objectifs de qualité de la zone de transit :

- Estuaire de qualité sans période d'anoxie ;
- Barrages équipés de dispositifs permettant le franchissement de plus de 90 % des individus ;
- Dispositifs de franchissement retardant la migration au minimum ;
- Régime hydraulique approprié lors des périodes à enjeux, naturel.

2 HYDROLOGIE DU BASSIN VERSANT

L'aire prise en compte dans ces suivis est celle qui est colonisable par les saumons atlantiques adultes, on ne considèrera que les tronçons des cours d'eau classés axe bleu. Deux stations sont représentatives de l'hydrologie de 2017 sur le bassin versant Dordogne : celle d'Argentat pour l'axe Dordogne et ses affluents et celle de Tulle pour l'axe Corrèze et ses affluents. Les figures ci-dessous représentent l'évolution des débits sur ces stations au cours de l'année calendaire.

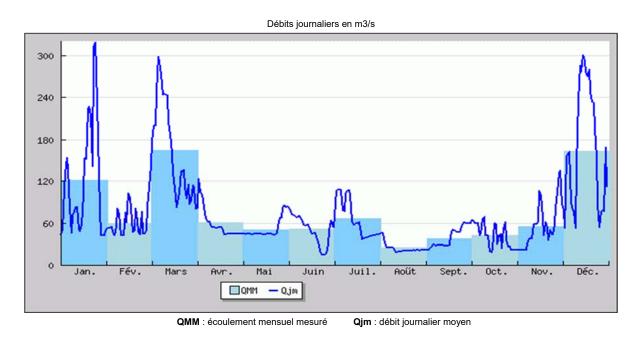


Figure 2 : Courbe des débits journaliers moyens (Qjm) et histogramme des débits mensuels mesurés (Qmm) de la Dordogne à Argentat en 2017 (source : Banque Hydro).

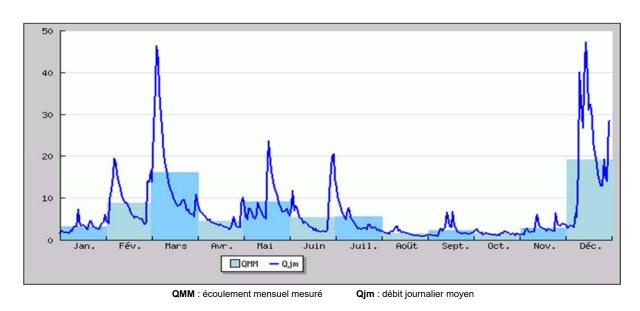


Figure 3: Courbe des débits journaliers moyens (Qjm) et histogramme des débits mensuels mesurés (Qmm) de la Dordogne à Tulle en 2017 (source : Banque Hydro).

Les courbes de débit moyen journalier sur la Corrèze (figure 3) dont le régime hydrologique est quasiment naturel et celle de la Dordogne (figure 2) dont le régime hydrologique est totalement artificialisé du fait des grands barrages sont relativement similaires si l'on considère uniquement leur aspect général, c'est-à-dire qu'on y retrouve les mêmes périodes humides et périodes sèches. Par contre, on notera que les hausses et baisses de débit sont plus versatiles sur la Corrèze alors qu'un effet tampon est visible sur la Dordogne, notamment de mai à octobre. Il a pour conséquence de « lisser » les débits, de diminuer l'amplitude des crues voire même de faire disparaitre les plus modestes. Il est le résultat de la gestion des grands barrages et de l'alternance des périodes de lâcher et de stockage d'eau selon les besoins en énergie.

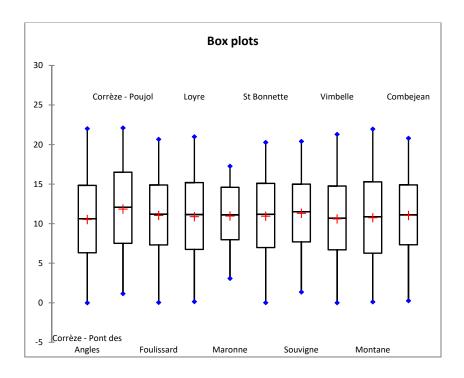
On remarque, en 2017, que les débits étaient faibles à l'exception des mois de janvier, mars et décembre sur la Dordogne. Sur la Corrèze, le mois de janvier était plutôt sec. Pendant la période estivale, on remarquera des débits moyens corrects pour la Dordogne impactant peu les surfaces d'habitats, par contre dans la Corrèze, un étiage assez sévère est à noter. L'année 2017 se caractérise donc par une faible hydrologie tout au long de l'année sauf au mois de juillet qui a été excédentaire. Les observations ont montré une baisse de 30 à 35 % de débit sur les 10 premiers mois de l'année, quel que soit le cours d'eau considéré.

Les conséquences de ces débits sur les salmonidés sont multiples, il est probable que certaines frayères aient été endommagées suite aux fortes crues hivernales dans certains cours d'eau ; durant l'émergence (mars à fin mai), les variations de débit n'ont pas été trop perturbantes. Les débits soutenus sur la Dordogne de mai à juillet sont bénéfiques aussi bien aux alevins les plus tardifs que pour la migration des géniteurs. L'étiage de la Corrèze a surement pénalisé le recrutement sur les parties aval de Tulle où les températures ont tendance à dépasser les 20 °C.

3 TEMPERATURES SUR LE BASSIN

Migado dispose d'un réseau de suivi des températures des cours d'eau classés axe bleu (annexe1). Le tableau et la figure ci-dessous présentent les caractéristiques des températures annuelles relevées sur 16 stations, localisées sur la Dordogne et ses affluents.

Tableau 1 : Caractéristiques des données annuelles de température sur 16 stations des bassins Dordogne et Corrèze.


	Dordogne -	•	•	•	•	Dordogne -	•	Ruisseau
Statistique	Argentat	Maronne	Souvigne	Foulissard	Combejean	Peyriget	Ménoire	d'Orgues
Nb. d'observations	4380	4380	4380	4380	4380	4380	4380	4380
Minimum	5,451	3,077	1,351	0,039	0,248	5,451	3,646	0,389
Maximum	17,717	17,264	20,400	20,659	20,800	20,157	17,607	20,947
1er Quartile	7,719	7,964	7,700	7,315	7,333	8,028	8,562	7,245
Médiane	11,370	11,100	11,500	11,205	11,100	12,258	11,831	11,034
3ème Quartile	14,716	14,596	15,000	14,891	14,900	16,119	14,213	14,927
Moyenne	11,199	10,968	11,303	11,036	11,036	12,135	11,361	10,991
Variance (n-1)	12,164	14,088	18,614	22,828	23,005	16,541	10,529	22,961
Ecart-type (n-1)	3,488	3,753	4,314	4,778	4,796	4,067	3,245	4,792

	Corrèze -							_
	Pont des					Corrèze -		
Statistique	Angles	St Bonnette	Vimbelle	Montane	Roanne	Poujol	Maumont	Loyre
Nb. d'observations	4380	4380	4380	4380	4380	4380	4380	4380
Minimum	-0,009	0,012	0,000	0,112	0,806	1,147	0,500	0,142
Maximum	22,014	20,270	21,295	21,958	20,890	22,102	20,586	20,990
1er Quartile	6,317	6,978	6,691	6,271	7,653	7,518	7,077	6,748
Médiane	10,632	11,180	10,698	10,865	11,610	12,082	11,590	11,157
3ème Quartile	14,833	15,094	14,752	15,284	16,033	16,507	15,769	15,195
Moyenne	10,516	10,942	10,601	10,746	11,672	11,845	11,285	10,880
Variance (n-1)	27,392	24,802	25,849	29,112	24,414	27,761	26,292	26,581
Ecart-type (n-1)	5,234	4,980	5,084	5,396	4,941	5,269	5,128	5,156

Les températures sont relevées toutes les 2 heures par une sonde autonome, ce qui représente 4380 enregistrements annuels pour chacun des sites. Pour les salmonidés, il est important que les températures soient peu fluctuantes, fraiches et jamais au-dessus de 25 °C l'été. Les successions de journées chaudes au-dessus de 20 °C sont également préjudiciables à la croissance et à la survie des salmonidés.

L'amplitude de distribution des températures annuelles est plus grande sur les cours d'eau à régime naturel que sur ceux à régime artificialisé. Les grands barrages qui réalimentent les cours d'eau avec de l'eau prise dans le fond des retenues permettent d'éliminer les températures extrêmes et de conserver une amplitude de valeur entre 3 et 18 °C, contre 1 à 22 °C pour les autres cours d'eau dans les parties amont. On remarquera des valeurs maximales aberrantes pour la Corrèze au Pont des Angles, où la sonde a dû être hors d'eau quelques heures. Par contre, au niveau de la station de Poujol en aval, la température devient problématique pour les salmonidés.

Ces données confirment que la Maronne et de la Dordogne sont des habitats de tout premier ordre d'un point de vue thermique pour les salmonidés, avec des températures douces en hiver permettant une émergence plus rapide et une croissance continue. De même en été, les températures fraiches favorisent l'alimentation et la croissance. Les affluents du bassin présentent cependant également des conditions favorables même si les plages thermiques ne favorisent pas autant la croissance. Au niveau de la Corrèze aval, la situation est moins favorable.

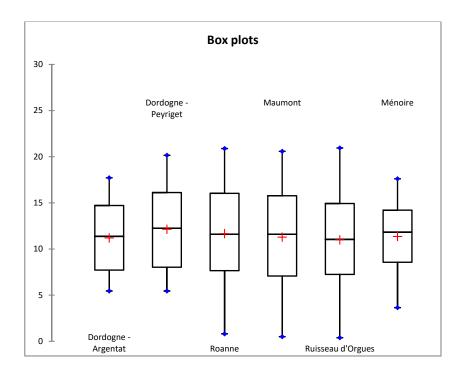
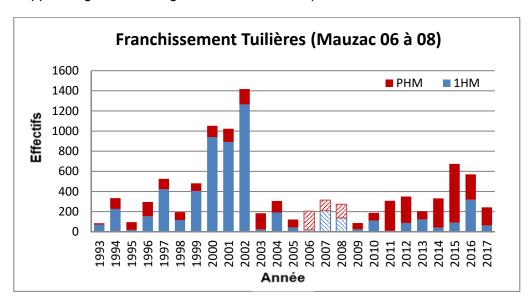



Figure 4 : Distribution des températures (°C) annuelles sur les stations de mesure du bassin Vézère-Corrèze et Dordogne.

4 LIBRE CIRCULATION SUR LE BASSIN

4.1 Franchissement des obstacles du Bergeracois

Les trois obstacles du Bergeracois constituent le premier filtre pour l'accessibilité aux zones amont favorables pour la reproduction. La totalité des poissons qui ne franchissent pas ces obstacles sont perdus et ne participeront pas à la production de juvéniles. Deux des 3 obstacles sont suivis par des stations vidéo (tous les résultats sont disponibles et consultables dans le rapport Migado suivi migration Tuilières 2017).

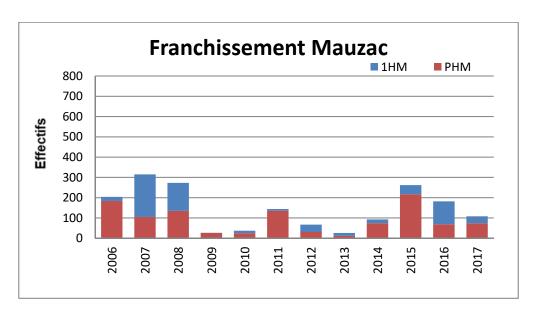


Figure 5 : Histogramme des effectifs de saumons comptabilisés à Tuilières (en haut) et à Mauzac (en bas) en fonction de l'âge des saumons.

En 2017, 243 saumons ont franchi l'ouvrage de Tuilières. Les comptages à Tuilières sont considérés comme indicateur de référence pour la population de saumons de la Dordogne. Ce chiffre est parmi les plus élevés depuis le début du plan de restauration. Il est d'autant plus important que l'essentiel du contingent migrant est constitué de saumons PHM (plusieurs hivers de mer), c'est-à-dire des poissons de grande taille qui migrent tôt dans la

saison. Ils sont donc bien adaptés aux conditions hydrologiques du bassin et aux distances à parcourir pour atteindre les zones de reproduction. Cependant, l'accès aux zones de fraie est conditionné par le franchissement de l'ouvrage de Mauzac. En 2017, l'estimation du taux de transfert Tuilières-Mauzac est de 52 % des individus (hors saumons conservés pour Bergerac). Ce taux d'efficacité, bien que supérieur à l'année dernière (36 %) est encore bien trop faible pour espérer une reproduction naturelle qui permettrait à l'espèce de se maintenir sans alevinage.

Il est également intéressant de noter qu'à Mauzac les effectifs migrants les plus élevés ont été constatés en 2007 et 2008, alors que le barrage de Tuilières n'était pas en fonctionnement. En 2006, 2007 et 2008, le barrage de Tuilières était complètement ouvert et transparent.

L'efficacité des passes à poisson des barrages de Bergerac et de Tuilières, est également en dessous de ce que l'on serait en droit d'attendre pour assurer la continuité sur un axe aux enjeux de biodiversité aussi importants que sont ceux de la Dordogne. Les 3 ouvrages du bergeracois bloquent à eux seuls plus de la moitié des géniteurs migrants de la population sauvage de saumons. Ces poissons sont alors perdus et ne contribueront pas au renouvellement de la population. Il est essentiel pour l'accroissement et la durabilité de la population de saumons de la Dordogne, d'assurer l'accessibilité aux zones de fraie à un maximum de géniteurs, l'avenir de la population de saumon atlantique de la Dordogne est étroitement lié à une reproduction naturelle abondante et efficace.

Dans les parties suivantes, l'analyse portera sur le recrutement des juvéniles de salmonidés issus de la reproduction naturelle. Les saumons échantillonnés à cet effet sont les progénitures des géniteurs ayant migré en 2016. On notera que cette année-là, les effectifs migrants étaient parmi les plus importants (près de 180 géniteurs passés au barrage de Mauzac).

5 SUIVI DU RECRUTEMENT NATUREL PAR PECHES ELECTRIQUES

5.1 Objectifs.

Les pêches électriques ont lieu fin août sur le bassin de la Dordogne. Ce contrôle des populations de juvéniles constitue un des éléments nécessaires à l'évaluation du programme de restauration. Il est un outil de référence sur le bassin de la Dordogne pour appréhender réellement le recrutement en milieu continental. Ces pêches sont localisées sur la zone non-repeuplée. Les sites prospectés se situent sur les axes Dordogne, Maronne et Souvigne.

L'objectif des pêches 2017 était de poursuivre les investigations sur le recrutement naturel en relation avec l'activité de reproduction sur des cours d'eau fortement soumis aux éclusées (Dordogne et Maronne), et d'évaluer la qualité des habitats à juvéniles sur les cours d'eau à régime hydraulique naturel.

5.2 Moyens mis en œuvre

Ce suivi mobilise en tout 78 hommes-jours pour 8 journées de prospection. Le matériel utilisé dans l'étude est un « Héron » mis au point par la société DREAM ELECTRONIQUE (puissance de 4 kW) délivrant un courant continu. Pour atteindre les sites de pêche entre Argentat aval et Saulières, une embarcation à moteur est utilisée. Les pêches sur les affluents se déroulent de façon classique en accédant aux sites depuis la berge.

5.3 Echantillonnage : sites prospectés et technique

Les stations prospectées sont localisées dans la zone où aucun alevinage n'est pratiqué afin de favoriser la reproduction naturelle. Sur cette aire, 16 stations ont été choisies, localisées sur 3 cours d'eau : Dordogne (D1 à D8), Maronne (MAR 0-1-2-4-7) et Souvigne (SOU2).

Pour la Dordogne, dont la largeur est systématiquement supérieure à 50 mètres, la technique d'échantillonnage par points ou CPUE (capture par unité d'effort) est maintenant systématiquement utilisée sur le cours d'eau. Elle consiste à réaliser un certain nombre de posés d'électrode sur la plus grande surface possible de la station choisie, de façon aléatoire et à l'aide d'une seule électrode. Elle ne nécessite pas, contrairement à la traditionnelle méthode « De Lury » (méthode peu adaptée aux grands cours d'eau - DEGIORGI et RAYMOND, 2000), un choix plus ou moins « subjectif » d'un secteur au sein d'une station et permet de prospecter la quasi-totalité de la station. Elle paraît en cela mieux adaptée aux cours d'eau de grande dimension. Cette technique présente de plus l'avantage d'être nettement plus rapide, de nécessiter peu de personnel et donc d'augmenter le nombre de stations prospectées, tout en échantillonnant de façon aléatoire sur des secteurs représentatifs.

Pour la Maronne et la Souvigne, du fait de leurs dimensions, la méthode De Lury (échantillonnage exhaustif à 2 passages) est utilisée. Les stations sont prospectées sur leur surface totale ou sur 50 % de leur surface.

A la fin de chaque pêche, les différents poissons capturés sont triés par espèce. Les poissons sont anesthésiés à l'aide d'une solution anesthésiante adaptée (CHANSEAU et *al.*, 2002). Tous les salmonidés (saumons et truites) ainsi que les anguilles sont pesés et mesurés individuellement. En ce qui concerne les autres espèces, seuls les effectifs, tailles dans un échantillon et la biomasse totale sont relevés.

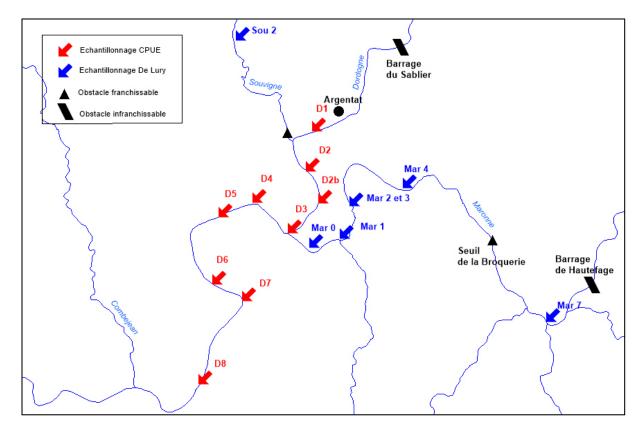


Figure 6 : Localisation des sites prospectés par pêches électriques dans le cadre du suivi du recrutement de la reproduction naturelle.

5.4 Résultats

5.4.1 Dordogne.

Les campagnes d'échantillonnages sont menées selon le même mode opératoire sur 3 sites depuis 2002 : D0, D2, D2b et D8. Cette chronique de données permet une analyse des recrutements sur 13 années. Depuis 2006, elle a été systématisée sur tous les radiers (10 en tout) du linéaire considéré, soit environ 10 km en aval du barrage du Sablier sur la Dordogne. Depuis 2012, le site DTG (D0) a été abandonné car ses caractéristiques hydromorphologiques ne correspondent plus à celles d'un habitat typique à salmonidés juvéniles.

Tableau 2 : Chronique de l'effort d'échantillonnage annuel sur la Dordogne (zone nonrepeuplée).

	CPUE	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
D0	DTG	√															
D1	Pont Argentat	\checkmark			\checkmark	✓	\checkmark	✓									
D2	Malpas	\checkmark	✓														
D2b	Europe	\checkmark	✓														
D3	Maronne		\checkmark			\checkmark	✓										
D4	Escourbanier		\checkmark			\checkmark	✓										
D5	Monceaux		\checkmark			\checkmark	✓										
D6	Chabanals					\checkmark	✓										
D7	Clorieux		\checkmark			\checkmark	✓										
D8	Saulières	\checkmark	✓														

Tableau 3 : Taille moyenne (mm) des salmonidés échantillonnés en 2017 dans la Dordogne en zone non-repeuplée (salmonidés nés en 2017, dits 0+).

	Radier	Saun	non 0+	Truite fario 0+			
	Radier	Effectif	Long. Moy	Effectif	Long. Moy		
D1	Pont d'Argentat	-	-	25	76,8		
D2	Malpas	-	-	25	88,9		
D2b	Camping Europe	5	98,8	40	85,2		
D3	Confluence Maronne	3	109,3	28	83,8		
D4	Soleil D'OC	6	95,2	50	86,3		
D6	Chabanal	2	117,5	33	89,0		
D5	Pont de Monceau	5	100,0	58	91,4		
D7	Clorieux	1	115,0	49	93,2		
D8	Saulières	9	107,4	21	96,0		

Le calcul des tailles moyennes en fonction de l'espèce et de la classe d'âge des poissons échantillonnés permet d'avoir une idée assez juste de ce que peuvent être les tailles moyennes pour la population globale dans le milieu, particulièrement lorsque les échantillons sont importants (> 20 individus).

Des saumons ont été capturés en 2017 sur toutes les stations à l'aval de la confluence avec la Maronne et aucun en amont. Les captures de truites suivent une tendance similaire car les effectifs capturés ont tendance à s'accroitre à l'aval de la confluence également. Cette tendance est moins marquée cette année. Pour rappel, 54 % des nids recensés lors du suivi de la reproduction naturelle sur ce linéaire ont été comptabilisés en amont de la confluence Dordogne/Maronne. Les tailles moyennes observées sont conformes aux observations des années précédentes et sont correctes pour la saison, voire même un peu plus élevées pour les saumons comparativement à l'année dernière (< 99 mm en 2016).

5.4.1.1 Abondance en salmonidés et facteurs limitants.

Durant leurs premiers stades de vie, les salmonidés sont très vulnérables et doivent faire face à de multiples menaces. Ainsi, leur abondance une année donnée dans la Dordogne est liée à trois types de facteurs : biologique, physique et anthropique.

Facteur biologique : quantité de géniteurs sur frayères et de nourriture disponible ;

Facteur physique : régime thermique et hydraulique, habitat disponible ;

Facteur anthropique : régime d'éclusées (nombre, importance, gradient et occurrence).

La quantité de géniteurs sur frayères est évaluée grâce au suivi des migrations réalisé par Migado et affinée, via le suivi de la reproduction naturelle des grands salmonidés réalisé par Ecogea pour Migado. Ce suivi qui dure depuis l'hiver 1999/2000 permet de quantifier les frayères sur le tronçon étudié et de les localiser précisément au travers d'une base de données cartographiques. Toutefois, à moins de surprendre un poisson pendant l'acte (fait rare), il est impossible de distinguer une frayère de saumon de celle d'une truite. La taille du nid peut être un indicateur mais il n'est pas fiable du fait de la présence de truites de grande taille dans la rivière. Dans la mesure où les stades précoces de truites et de saumons ont des exigences

similaires et sont sensibles aux mêmes facteurs limitants, nous intégrons donc les deux espèces dans les analyses qui suivent.

Si le facteur biologique fixe les bases du recrutement possible (car à un nombre de géniteurs donné correspond une quantité d'œufs déposés théorique), les deux autres facteurs sont limitants et peuvent être préjudiciables à la survie des œufs ou des alevins de salmonidés. Par exemple, une crue peut déstructurer ou colmater une frayère, une éclusée importante entrainer l'échouage et la mort d'alevins, etc. Ainsi, l'analyse des résultats des pêches électriques n'a de sens qu'en intégrant ces paramètres. Les facteurs environnementaux (en particulier la température) peuvent influer sur le caractère précoce ou tardif du frai et de l'émergence. Les préjudices dus aux crues ont un caractère exceptionnel sur une rivière « équipée » comme la Dordogne grâce aux grands barrages qui ont un effet tampon et qui atténuent ou annulent ces phénomènes. De plus, les données acquises ces dix dernières années et leur évolution dans le temps montrent que les régimes thermiques enregistrés à Argentat sont en totale adéquation avec les exigences des salmonidés. Cependant, l'exploitation des barrages est à l'origine de phénomènes récurrents et hautement préjudiciables : les éclusées.

Elles sont quantifiées selon leur amplitude. L'impact sur la population de salmonidés juvéniles est difficile à évaluer si l'on considère seulement l'ampleur du phénomène. Il faut aussi prendre en compte le stade biologique atteint par les salmonidés. Il semblerait en effet que les plus jeunes, aux capacités de nage moins développées, soient les plus sensibles (c'est-à-dire durant la période de mars à juin, selon le régime thermique hivernal et printanier).

Les suivis du recrutement annuel par pêches électriques ne sont vraiment exhaustifs que depuis 2006, c'est-à-dire qu'à partir de cette période, tous les radiers sont pêchés systématiquement sur l'axe Dordogne entre Argentat et Beaulieu. Ces échantillonnages permettent de calculer un niveau annuel d'abondance pour chaque radier prospecté.

Le calcul de ce niveau d'abondance en juvéniles de salmonidés est réalisé selon la formule suivante :

Abondance $_{(i)} = (S0_{(i)} + T0_{(i)}) / P_{(i)}$

S0 : effectif de saumons nés au cours de l'année et échantillonnés sur la station « i » ;

T0 : effectif de truites nées au cours de l'année et échantillonnées sur la station « i » ;

P : nombre de posés d'électrode réalisé sur la station « i»

Pour rappel, ne sont pris en compte que les sites n'ayant pas été repeuplés : pour ceux situés en limite de la zone de repeuplement, les poissons alevinés sont différenciés par marquage et sont donc reconnaissables et exclus des analyses. L'intégration dans cette analyse des données d'abondance issues des stations repeuplées biaiserait l'interprétation des résultats puisque, sur ces dernières, les abondances en salmonidés sont plus directement liées à l'effort et à la qualité du repeuplement qu'à l'expression des facteurs environnementaux décrits plus haut.

Tableau 4 : Indices d'abondance en salmonidés calculés sur les radiers prospectés (2002-2017).

Radiers		2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
DTG	D0	0,21	0,51	0,00	0,04	0,00	0,06	0,00	0,04	0,00	0,17	0,00	-	-	-	-	-
Pont Argentat	D1	0,08	-	-	0,10	0,11	0,07	0,00	0,73	0,17	0,68	0,48	1,15	2,56	1,42	0,33	1,92
Malpas	D2	1,02	0,63	0,14	0,11	0,07	0,04	0,23	0,63	0,13	0,40	0,08	0,19	1,30	0,26	0,39	1,25
Europe	D2b	0,70	1,48	0,17	0,71	1,22	0,37	1,42	0,88	1,18	2,30	0,15	1,10	2,20	1,65	0,71	2,25
Maronne	D3	-	0,51	-	-	0,67	0,42	0,43	0,68	0,38	2,56	0,13	0,52	2,33	1,36	0,32	1,82
Soleil d'Oc	D4	-	0,76	-	-	0,86	0,33	0,78	2,37	2,74	3,17	1,00	2,55	3,60	3,00	1,67	2,80
Monceaux	D5	-	0,27	-	-	1,75	0,25	0,44	0,85	2,42	3,53	1,30	1,19	1,77	4,65	1,32	3,00
Chabanals	D6	-	-	-	-	0,40	0,12	0,79	1,08	0,90	1,48	0,80	1,23	1,65	0,83	2,35	1,75
Clorieux	D7	-	0,42	-	-	0,65	0,20	0,67	1,46	1,14	2,44	1,08	0,65	1,96	1,82	0,95	2,50
Saulières	D8	1,53	1,37	0,35	0,68	0,74	0,53	1,11	1,89	1,12	4,29	0,54	0,95	2,11	1,05	1,38	1,25

Le tableau ci-dessus regroupe les abondances relevées sur chacun des radiers prospectés par la méthode CPUE depuis 2002. Les valeurs correspondent au nombre de salmonidés 0+ capturés par posé d'anode. On notera que les valeurs enregistrées en 2017 sont globalement plus élevées que ces 2 dernières années.

5.4.1.2 Comparaison interannuelle des abondances

Il apparaît qu'en considérant les radiers individuellement pour leurs caractéristiques intrinsèques ou regroupés en tronçons selon leur positionnement sur l'axe, les tendances observées sont proches, même s'il y a des différences de valeurs en lien avec les propriétés des sites considérés.

Le calcul de l'abondance globale sur le linéaire considéré, avec 3 radiers (chronique de 11 ans) ou avec 9 radiers (chronique de 8 ans) confirme (figure 7) également les tendances observées plus haut :

- Période 2002-2003, niveau d'abondance faible ;
- Période 2004-2008 et 2012, niveau d'abondance très faible :
- Période 2009-2010, 2013 et 2016, bon niveau d'abondance ;
- 2011, 2014 et 2015, abondance exceptionnelle supérieure d'un facteur 2 aux précédents meilleurs résultats. A noter qu'en 2014, les conditions d'échantillonnage ont été perturbées par les débits hauts.
- Cette année fait partie des 3 meilleures années de recrutement.

La comparaison des abondances calculées avec les 3 radiers historiques et avec les 6 autres radiers du linéaire montre une évolution similaire des valeurs sur la période. La corrélation entre les deux jeux de données est forte (R^2 =0,83). Elles évoluent sur la période 2006-2012 de façon linéaire et quasiment identique d'une année à l'autre, selon l'équation y=1,0308x+0,01362, avec y = abondance pour 6 radiers et x = abondance pour 3 radiers.

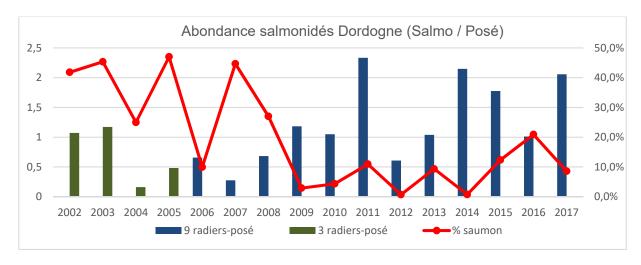


Figure 7 : Chronique d'abondance en salmonidés 0+ sur les radiers « historiques » de 2002 à 2005 (barres vertes) et sur tous les radiers de 2006 à 2017 (barres bleues).

On remarquera qu'en 2017, la proportion de saumons dans l'échantillon reste élevée, cependant cela semble plus lié aux faibles abondances de truites qu'à un recrutement exceptionnel pour les saumons.

Abondance en salmonidés en relation avec la reproduction naturelle ou indicateur de recrutement.

La réussite du recrutement des juvéniles de salmonidé ne peut être appréhendée qu'à l'échelle de la rivière ou alors en utilisant une station référence. L'échantillonnage par CPUE est aléatoire sur un radier, et chacun d'eux est représentatif de l'habitat caractéristique à salmonidés, cette particularité permettant d'émettre l'hypothèse que chaque radier est une unité d'un plus grand ensemble. L'ensemble considéré est le tronçon de Dordogne allant du barrage du Sablier à Saulières (D8).

Afin d'appréhender le recrutement et l'effet de l'environnement sur celui-ci, on ne peut se contenter de l'analyse d'abondance en salmonidés lors de pêches ponctuelles à l'automne. C'est pourquoi, les données récoltées lors de la campagne annuelle de suivi de la reproduction des grands salmonidés (rapport Ecogea pour Migado, suivi de la reproduction des grands salmonidés) sont utilisées afin de pondérer les abondances calculées. Les frayères étant toutes géo-référencées, il est possible d'extraire de la base de données le nombre correspondant à l'activité de fraie sur le tronçon de Dordogne considéré. Cela permet de créer un indicateur de comparaison des recrutements annuels de salmonidé sur la base des abondances en juvéniles automnales sur un tronçon donné pondérée par l'activité de fraie. Cet outil est indispensable pour mettre en avant des tendances et chercher les facteurs extérieurs pouvant les expliquer. Cependant, ces données récoltées dans le milieu naturel, dans des systèmes vastes et profondément modifiés ne permettent pas d'estimer de façon fiable la taille de la population de juvéniles de saumons sur la Dordogne pour une année donnée.

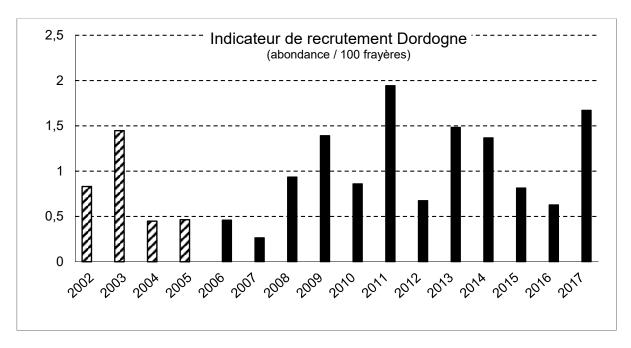


Figure 8 : Indicateur du recrutement (ou abondance relative) en salmonidés pour 100 frayères sur le tronçon « barrage du Sablier-Saulières » (2002-2005, 3 radiers/2006-2017, 9 radiers).

L'indicateur est considéré comme « bon » lorsqu'il dépasse la valeur 1. Chaque fois qu'il a dépassé cette valeur, on a constaté une absence d'éclusées durant la période printanière. La convention de gestion des débits sur la Dordogne (www.eptb-dordogne.fr), convention qui lie EDF, l'Agence de l'eau, Epidor et l'Etat français définit des critères d'exploitation qui limitent les débits maximum et minimum pouvant être mis en place lors de la réalisation d'éclusées tout en considérant le régime hydraulique naturel de la rivière et les limites techniques de l'outil de production d'électricité. L'objectif est de concilier grande hydroélectricité et fonctionnalité des habitats. L'objectif est d'améliorer les conditions de survie des salmonidés, il s'agit de réduire l'amplitude du phénomène d'éclusées durant les périodes à fort enjeu biologique et de maintenir en eau le maximum de surface d'habitats de reproduction et de croissance.

Sur la Dordogne, la mise en place de cette gestion des débits (depuis 2008) a eu un impact positif, puisqu'il a été constaté une diminution de l'ampleur du phénomène d'échouage-piégeage des juvéniles (ECOGEA pour MIGADO puis pour Epidor) et en parallèle, le recrutement des salmonidés a considérablement augmenté, comme en témoignent les résultats des pêches électriques (depuis 2008). Les modalités de la convention de gestion étaient évolutives de 2008 à 2012. Mais, en 2011 et 2013, comme cela avait été le cas en 2003, la ressource en eau n'a pas été suffisante pour que l'exploitant réalise des éclusées. Il en a résulté des niveaux très élevés de l'indicateur de recrutement. Ces résultats confirment qu'un recrutement satisfaisant des salmonidés est étroitement lié à l'absence d'éclusées printanières.

Cependant, comme en témoignent les résultats de 2012, en dépit d'un nombre d'éclusées très faible, l'impact d'une crue printanière sur le recrutement peut être très négatif. Ce phénomène (naturel) est incontrôlable et incontournable mais heureusement cyclique. Il ne se produit pas tous les ans. Sur un cours d'eau à régime naturel, l'impact négatif d'une crue est compensé par un impact positif sur l'habitat en favorisant le transport de sédiments et l'ameublissement du substrat. Cependant, sur un cours d'eau artificialisé comme la Dordogne, la présence de barrages et de retenues fait que l'habitat n'en a pas vraiment bénéficié, l'apport de sédiments par l'amont étant inexistant et les crues ne sont plus assez puissantes pour être réellement morphogènes.

Il est essentiel pour la pérennité de la population de saumon du bassin de la Dordogne et des autres populations de salmonidés également, d'assurer un niveau de recrutement élevé sur l'axe Dordogne. D'ailleurs, concrètement, de nombreux témoignages de pêcheurs à la ligne confirment une augmentation des quantités de truites et ombres adultes depuis 2010, l'aire de répartition s'est même étendue vers l'aval tant les effectifs sont importants.

Concernant les années 2016 et 2012, il apparait que l'indicateur est à un niveau faible, ce résultat est à mettre en lien avec des crues importantes durant la période d'incubation des œufs et d'émergence des individus les plus précoces, les truites en particulier. L'année 2017 est marquée par un très bon niveau de l'indicateur d'abondance, reflet d'un faible niveau de perturbation hydrologique du 15 mars au 15 juin 2017, puisque le niveau de cette année est classé en « Perturbation hydrologique sensible » (indicateur « Eclusées », Courret et al, 2014). Le niveau est légèrement déclassé à cause de quelques éclusées de faible amplitude jusqu'à la mi-avril qui font suite au coup d'eau du mois de mars. Les fréquences des baisses de débit figurent aussi parmi les plus faibles sur la Dordogne depuis 15 ans sur cette période. Les baisses de débit se sont faites avec des gradients de baisse proches des variations naturelles.

5.4.2 La Maronne.

Les campagnes d'échantillonnages sont menées selon le même mode opératoire (pêche De Lury) depuis 2002 sur la station du Pont de l'Hospital. La station des Bras de l'Hospital (rive droite) a été ajoutée en 2006, suite à des travaux qui ont permis son alimentation en eau, même lors de faibles régimes hydrauliques (retour au débit réservé). La station rive gauche a, quant à elle, été ajoutée en 2007. En 2010, deux stations avaient été suivies dans le tronçon court-circuité suite à l'aménagement de la digue de la Broquerie et à l'augmentation du débit restitué au droit du barrage. En 2017, cinq stations ont été suivies : MAR 0-1-2-4-7 (Figure 7).

Tableau 5 : Chronique de l'effort d'échantillonnage annuel sur la Maronne (Mar1 le site référence).

	De Lury	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
Mar 0	Orpailleur										✓	✓	✓	✓	✓	✓	√
Mar 1	Pont de l'Hospital	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Mar 2	Bras de l'Hospital RD)				✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Mar 3	Bras de l'Hospital RG	;					✓	✓	✓	✓	✓	✓					
Mar 4	Prach										✓	✓	✓	✓	✓	✓	✓
Mar 5	Grafouillères										✓						
Mar 6	Bras Scierie RG									✓	✓						
Mar 7	Pont Broquerie									✓	✓	✓	✓	✓	✓	✓	✓

5.4.2.1 Caractéristique des salmonidés échantillonnés (truite et saumon).

Les prises de mesures réalisées sur les poissons capturés permettent de calculer la proportion de saumons pour une classe de taille donnée. L'objectif de notre échantillonnage étant de suivre le recrutement annuel, deux catégories seront distinguées : les poissons de l'année (nés au printemps précédant les pêches, dits 0+) et les autres (dits 1+ et+).

Considérant l'ensemble des données biométriques archivées depuis 2002 concernant les saumons sauvages, il apparaît que la majorité des individus capturés sont des juvéniles de l'année (0+) et que la limite de taille entre ces poissons et leurs aînés de 1 an ou plus se situe en dessous de 125 mm ; au-delà, les spécimens considérés ont plus d'un an.

Les tableaux 6 et 7, présentent les effectifs et les tailles moyennes des saumons et des truites issus de reproduction naturelle dans la Maronne, capturés sur chaque station.

On peut y voir que moins de saumons ont été capturés comparativement au nombre de truites mais également qu'ils sont présents sur toutes les stations. Néanmoins, les saumons sont bien représentés.

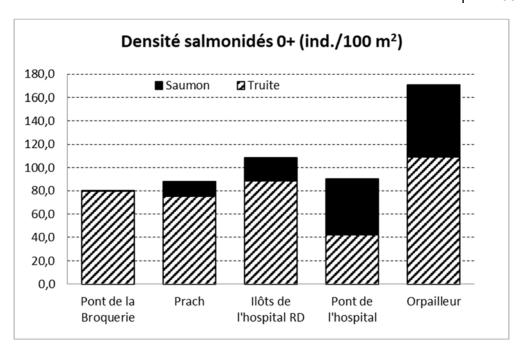
Tableau 6 : Effectifs et tailles moyennes des saumons atlantiques échantillonnés en 2017 dans la Maronne en zone non-repeuplée

		Saumon atlantique											
	Nés	en 2017	Nés a	vant 2017									
	Effectifs	Long. Moy.	Effectifs	Long. Moy.									
Pont de la Broquerie	1	67,0											
Prach	46	80,5	8	154,3									
llôts de l'hospital RD	95	74,7	5	156,6									
Pont de l'hospital	308	92,5	30	179,6									
Orpailleur	493	91,7	23	179,2									

Tableau 7 : Effectifs et tailles moyennes des truites fario échantillonnées en 2017 dans la Maronne en zone non-repeuplée.

		Truite fario											
	Nés	en 2017	Nés a	vant 2017									
	Effectifs	Long. Moy.	Effectifs	Long. Moy.									
Pont de la Broquerie	198	66,7	8	180,8									
Prach	270	74,7	6	227,5									
llôts de l'hospital RD	428	66,7	19	170,0									
Pont de l'hospital	274	83,4	20	222,6									
Orpailleur	923	79,9	19	215,4									

Les tailles moyennes des juvéniles nés en 2017 (0+) sont conformes à ce qui peut être constaté à cette période de l'année et à ce qui a été observé sur la Dordogne, voire de taille inférieure. Sur la station « Pont de la Broquerie » (Mar 7), où le régime thermique est plus froid, la taille moyenne est inférieure. De même, sur les stations des îlots de l'Hospital où la bathymétrie est plus faible que sur les autres stations, les tailles moyennes sont donc inférieures ; cet habitat ne présentant pas des conditions de vie optimales, les poissons les moins aguerris y sont relégués.


L'année 2017 est caractérisée par des effectifs observés très nettement supérieurs à ceux observés en 2016. A titre d'exemple, sur le site de l'Orpailleur, en 2016, 163 saumons et 119 truites ont été relevés. Le recrutement d'alevins de salmonidés en 2017 se classe parmi les meilleures années. Ces bons résultats sont moins fréquents que sur la Dordogne mais présentent une amplitude plus grande.

5.4.2.2 Densité en salmonidés sur l'axe Maronne.

Les densités en salmonidé nés durant l'année en cours (dits 0+) sont estimées grâce à la méthode De Lury. Pour l'année 2017, on peut ainsi appréhender les densités de salmonidés et plus particulièrement celles de saumon atlantique, ponctuellement, tout au long de l'axe, depuis le barrage infranchissable de Hautefage jusqu'à la confluence avec la Dordogne. Toutes les stations n'ont pas les mêmes caractéristiques hydromorphologiques, à cause de leur positionnement géographique (figure 7) ou de leurs propriétés :

- Mar 2 et 7 sont des tronçons complexes constitués d'entrelacements de bras. De plus,
 Mar 7 est situé dans le tronçon court-circuité où le débit est constant et les températures plus fraiches;
- Mar 1 est un tronçon de type chenal symétrique avec des zones d'expansion de la surface mouillée de petite taille ;
- Mar 0 et 4 sont des tronçons de type chenal asymétrique avec une large zone d'expansion de la surface mouillée où la hauteur d'eau est faible.

A noter que pour Mar 4, la zone de pêche a été limitée à la surface de faible hauteur d'eau (entre 8 et 60 cm) car la hauteur d'eau et les vitesses de courant de la portion restante n'étaient pas praticables et, de plus, faiblement attractives pour les salmonidés juvéniles. Une portion seulement du cours d'eau a donc été prospectée.

A noter 2 : la station Mar 1 est échantillonnée sur toute sa surface depuis 2002.

Figure 9 : Histogramme des densités de salmonidés 0+ pour les stations de l'axe Maronne.

Les valeurs de densité observées sur les stations Maronne sont très élevées pour la plupart des sites. Nous observons des valeurs supérieures d'un facteur 5 à 2016, notamment sur le site de l'Orpailleur. Les truites sont majoritaires, et l'abondance de saumons va croissante d'amont en aval. On remarquera également qu'en 2017 les saumons sont quasiment absents (1 seul individu) des captures réalisées en amont de la digue de la Broquerie.

5.4.2.3 Analyse de la chronique des données de densité.

Deux stations sont suivies depuis plusieurs années : Mar 1 et 2. Mar 1 est la station de référence sur la Maronne depuis 2002. Mar 4 et 7 sont suivies depuis 2011.

Tableau 8 : Chronique des densités de juvéniles relevées sur les stations de pêche de la Maronne.

De Lury		2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
Mar 0	Orpailleur										186	21,3	57,3	62,9	72,3	30,9	171
Mar 1	Pont d€	29,8	58,5	4,0	16,6	19,3	9,5	14,6	26	15,9	52,7	13,2	38,8	24,4	38,2	22,6	90,6
Mar 2	Bras de l'Hosp	ital RD				86,4	44,8	66,1	123	54,3	141	48,5	71,3	81,5	94,7	47,8	108
Mar 3	Bras de l'Hosp	ital RG					13,5	24,3	6,3	38,5	21,7	44,4					
Mar 4	Prach										65,3	50,1	63,7	93,0	84	28,3	87,9
Mar 5	Grafouillères										38,8						
Mar 6	Bras Scierie F	RG								80,6	44,9						
Mar 7	Pont de la Bro	querie								81,6	51,7	18,2	46,4	42,1	53,4	48,3	79,7

L'année 2011 reste une référence en termes de résultat de densité mais, en 2017, les résultats sont parmi les plus élevés dans la chronique de données.

En 2017, la Maronne à l'aval d'Hautefage a connu un nombre limité d'éclusées de mimars à mi-juin avec des gradients de baisse plus ou moins progressifs. La faible hydrologie de ce début d'année a mené l'exploitant à revenir au débit réservé dès la fin avril en pleine période d'émergence des alevins de salmonidés, provoquant les plus importantes mortalités depuis le début des suivis réalisés par ECOGEA en 2010. Malgré ces observations ponctuelles, le recrutement en alevins de salmonidés de l'année 2017 se classe parmi les meilleures années depuis 2002, même si les effectifs de saumons sur frayères restent encore inférieurs aux potentialités du bassin.

Alors qu'habituellement Mar 1 et Mar 2 évoluent de façon concomitante avec une bonne corrélation (R²=0,57) sur 9 années, avec des densités supérieures d'un facteur 4 en moyenne sur Mar 2 par rapport à Mar 1, cette année, les densités sont proches, mais en restant supérieures en Mar2.

La différence entre ces 2 stations vient du fait que les habitats sur Mar 2 sont plus favorables à l'accueil en nombre des juvéniles de salmonidés que ceux de Mar 1. Par contre, ceux de Mar 1 favorisent la production de juvéniles de plus grande taille. Cependant, depuis 2012, la station Mar2 a évolué morphologiquement et l'habitat n'est plus constitué à 100 % de zones « radier-rapide » de faible profondeur. L'implantation de ligneux sur des bancs de galets a conduit à la constitution de chenaux profonds en marge de ces derniers. Les creusements et ravalements effectués lors de la réouverture de ce bras en 2005 ont ainsi évolué et sont à surveiller (prise d'eau, colonisation des ligneux) pour conserver l'optimum d'accueil de ces habitats.

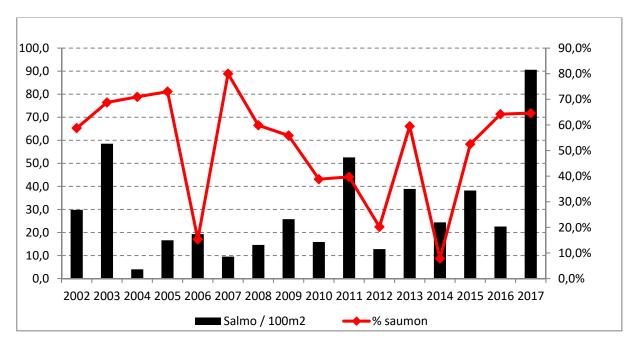


Figure 10 : Histogramme des densités de salmonidés 0+ pour la station du Pont de l'Hospital (Mar1) de 2002 à 2017.

Le suivi historique sur la station référence permet de constater que la densité relevée en 2017 est la meilleure jamais observée. La proportion de saumons dans l'échantillon est de plus de 60 %.

5.4.2.4 Abondance en salmonidés en relation avec la reproduction naturelle sur la station Mar 1

L'analyse des données de densité n'est complète qu'en intégrant la quantité de frayères relevée sur l'axe, afin de prendre en compte le facteur « dépose d'œufs » comme il a été fait précédemment pour l'analyse des abondances sur la Dordogne.

La station de référence est située sur le tronçon soumis à éclusées. Les densités de salmonidés juvéniles sont donc liées au nombre de frayères recensé en amont mais aussi aux éclusées réalisées (Suivis échouage piégeage Ecogea pour Migado puis Ecogea pour Epidor).

La figure ci-dessous présente l'évolution du nombre de frayères en amont du pont de l'Hospital et les densités de juvéniles relevées depuis 2002. On remarque que les tendances des deux courbes sont similaires, à l'exception de 6 années 2011, 2013, 2017 puis 2007, 2010 et 2012. Pour les 3 premières, on observe qu'en dépit d'un nombre « stable » de frayères, on constate une tendance à l'accroissement des densités de salmonidés. Pour les 3 dernières années, on observe le phénomène opposé, un nombre de frayères stable accompagné de densités à la baisse.

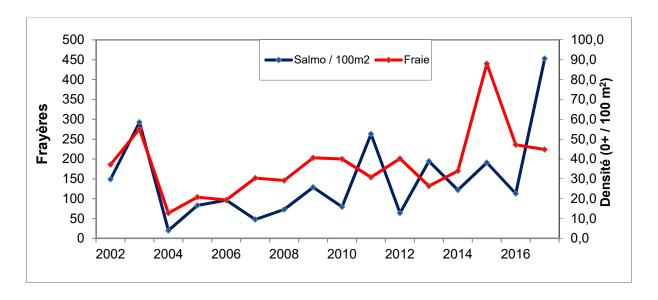


Figure 11 : Chronique de l'évolution des densités de salmonidés 0+ et du nombre de frayères au pont de l'Hospital (Mar 1) de 2002 à 2017.

La confirmation d'une forte quantité de frayères comptabilisée dans la Maronne est à mettre en lien principalement avec des travaux de restauration de frayères menés dans le tronçon court-circuité (TCC). Ces aménagements ont été rapidement et largement fréquentés par les salmonidés lors de la reproduction (figure 12).

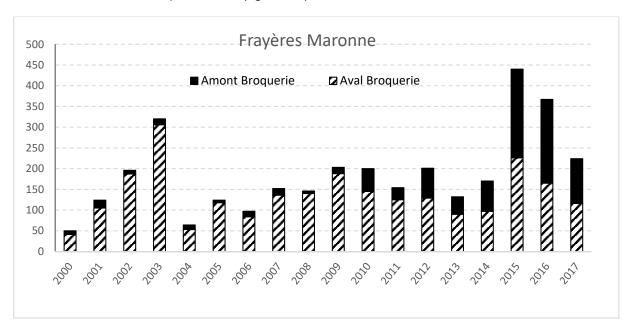


Figure 12 : Chronique de l'évolution du nombre de frayères comptabilisées dans la Maronne 2000 à 2017 en aval de la digue de la Broquerie et dans le TCC.

5.4.2.5 Evolution de l'indicateur de recrutement Maronne depuis 2002

Le suivi du recrutement des salmonidés depuis 2002 sur la Maronne permet d'appréhender le résultat de l'incubation, de l'émergence et de la croissance des juvéniles de salmonidés dans la rivière.

Ce suivi permet aussi d'évaluer si les facteurs environnementaux ont favorisé ou pénalisé la réalisation des toutes premières phases de vie des salmonidés (les plus délicates). Mais alors, une analyse interannuelle n'est cohérente qu'à condition de prendre en compte l'activité de fraie préalable aux pêches des années considérées. Ces deux variables sont liées, la première conditionnant le niveau (potentiel ou probable) de la seconde.

De ce fait, la mise en place d'un indicateur (tel que cela est fait pour le traitement des données de pêche sur la Dordogne) est nécessaire. Il permet, en pondérant les densités de salmonidés par le nombre de frayères, de créer une grandeur qui peut être utilisée comme indicateur et donc de faire une analyse interannuelle sur des bases communes.

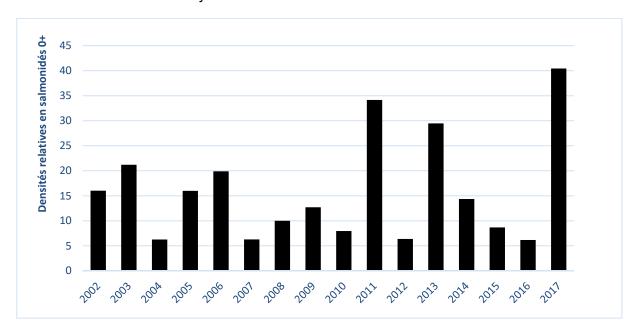


Figure 13 : Indicateur de recrutement des salmonidés (densités truites et saumons) sur la station du pont de l'Hospital pour 100 frayères comptabilisées sur la Maronne (2002 à 2017).

Lorsque l'indicateur est faible, cela signifie que des faibles densités de juvéniles ont été constatées lors des pêches de contrôle en dépit d'une activité de fraie importante. Il n'est pas le reflet de la production quantitative de la rivière une année donnée mais celui de sa productivité. Cet indicateur permet donc d'apprécier la qualité du recrutement et de procéder à des comparaisons interannuelles (figure 13). Finalement, cet indicateur permet une évaluation des impacts potentiels de facteurs physiques sur le recrutement. Deux types de facteurs peuvent avoir un impact : les facteurs environnementaux (crue ou étiage sévère) et les facteurs anthropiques (éclusées).

Depuis le début du suivi, deux années semblent sortir du lot concernant les valeurs de densité relative : ce sont 2003 et 2006. Comme sur la Dordogne, 2003 est considérée comme une année de référence sur la Maronne en matière de recrutement. Si 2006 apparait comme une année de qualité, c'est principalement dû au recensement d'un faible nombre de frayères en relation avec de mauvaises conditions d'observation. Puis, viennent 2002, 2005, 2008 et 2009 et enfin 2004 et 2007. L'année 2010 est en position intermédiaire entre les années moyennes et les mauvaises années. Enfin, 2011 présente une valeur d'indicateur largement au-dessus des autres années. Les densités de salmonidés 0+ constatées sont le résultat d'un nombre de frayères légèrement au-dessus de la moyenne 2002-2010 combiné à des conditions semble-t-il optimales pour l'incubation des œufs et les premières phases de vie des juvéniles. En effet, le régime hydraulique de la Maronne en 2011, comme celui de la Dordogne était atypique par rapport aux 10 précédentes années. On peut donc conclure que 2011 est la

nouvelle année référence car la qualité de recrutement cette année-là était proche de l'optimum de production de la rivière dans son état actuel.

Par contre, en dépit d'une activité de reproduction importante, l'année 2012 figure parmi les plus mauvaises, la situation hydrologique ayant été désastreuse durant la période de forte vulnérabilité des juvéniles de salmonidés. En 2016, la valeur de l'indicateur est basse, considérant le nombre élevé de frayères, cela confirme que les conditions hydrauliques printanières ont été pénalisantes pour le recrutement.

Au contraire, l'année 2017 présente une valeur très élevée de l'indicateur avec un nombre de frayères modeste (224 en 2017 contre en moyenne 403,5 en 2015 et 2016) reflétant un bon recrutement et ceci, malgré des mortalités importantes constatées au cours du mois d'avril lors de la baisse de débit survenue en pleine période d'émergence des alevins. En effet, cette baisse a été particulièrement impactante puisqu'elle a causé des mortalités exceptionnelles (environ 1 500 alevins de salmonidés retrouvés échoués-piégés sur cette épisode). Cette baisse de la Maronne, lente au début mais 15 fois plus rapide que les gradients naturels sur la partie finale de l'épisode, intervient à une période très sensible du cycle biologique de ces espèces, et conjugue un effet de débit de base très marqué (4 m³/s, débit le plus faible de la série) à un effet de durée de mise en eau des habitats littoraux très long (50 jours).

La convention de gestion des débits de la Dordogne s'applique également à la Maronne. Il apparaît que les mesures prises jusqu'alors n'ont pas eu l'effet escompté. Bien qu'il n'y ait quasiment plus de frayères exondées sur cet axe, des mortalités de juvéniles par échouage ou piégeage demeurent et le recrutement en salmonidés observé lors des pêches est inférieur à ce que l'on pourrait espérer et est surtout très variable d'une année à l'autre. Globalement, les mesures mises en place dans le cadre de la convention de gestion des débits ne sont pas aussi satisfaisantes pour la Maronne que pour la Dordogne. Pourtant, comme en témoignent les résultats 2011, 2013 et maintenant 2017, le potentiel de cette rivière en termes de grossissement et de production de juvéniles est très élevé, en dépit d'un milieu profondément modifié et artificialisé. Alors qu'elle accueille chaque année près de la moitié du fraie des grands salmonidés du bassin, la Maronne est loin de pouvoir prétendre à l'excellence en matière de fonctionnalité biologique. Les résultats obtenus en 2011 en l'absence d'éclusées printanières, en 2013, puis en 2017 sont un témoignage du potentiel de ce cours d'eau pour les migrateurs. Il est impératif de mettre tout en œuvre pour que cet axe fonctionne à son plein potentiel aussi souvent que possible et notamment les années où il n'y a pas de crue printanière.

5.4.3 La Souvigne

Ce cours d'eau est le deuxième plus important affluent (débit et taille) de la Dordogne dans sa portion amont, après la Maronne. Il n'est pas impacté par la grande hydroélectricité mais quelques petits seuils perturbent la libre circulation sur l'axe. En 2017, une seule station a été échantillonnée (SOU2), le pont de Chadiot, située en aval d'un seuil difficilement franchissable (digue de Céraunie) qui a été arasé fin 2013.

Caractéristiques des salmonidés et densités.

Tableau 9 : Effectifs et tailles moyennes des truites fario et saumons atlantiques échantillonnés en 2017 dans la Souvigne au pont de Chadiot (SOU2).

	Né	s en 2017	Nés avant 2017				
	Effectif	Long moy (mm)	Effectif	Long moy (mm)			
Saumon atlantique	20	100,9	-	-			
Truite fario	132	84,8	9	234,4			

Cet axe renferme de nombreux habitats de reproduction et de grossissement malgré des dégradations lourdes de la qualité des radiers liées à des dépôts de sable et de limon mobilisés par le piétinement du bétail en berge. Pourtant, régulièrement, de nombreux juvéniles 0+ de saumons et de truites sont observés sur cette station.

En 2017, la densité de saumons et truites de l'année est de 2,2 individu 0+ pour 100 m². C'est une des plus faibles densités enregistrées sur de site.

Alors que les résultats 2016 reflétaient un problème majeur en termes de recrutement, en lien avec les crues printanières, la présence de saumons de l'année témoigne de la réussite de la reproduction.

DISCUSSION ET CONCLUSION

Cette année encore, le nombre de géniteurs ayant réussi à atteindre les frayères et à se reproduire est insuffisant pour assurer la pérennité de la population sans soutien des effectifs. Les géniteurs migrants étaient majoritairement des PHM, accompagnés de quelques rares castillons, mais la dépose d'œufs reste insuffisante. Ce phénomène est préoccupant, non seulement car la quantité de géniteurs de retour est en-dessous de ce que l'on est en droit d'attendre mais, en plus, un déséquilibre flagrant par rapport aux résultats historiques est constaté. La classe d'âge des castillons est devenue mineure dans le contingent migrant et la « fenêtre » de migration est elle aussi réduite. Le problème semble lié à la ressource en eau qui est de plus en plus limitée dès le début de l'été jusqu'à la fin de l'automne. Ce phénomène a pour conséquence de favoriser la dégradation de la qualité d'eau, notamment au niveau de l'estuaire avec le phénomène de bouchon vaseux. Ainsi, la partie basse de la Dordogne est non seulement peu attractive pour les géniteurs mais aussi et surtout peu accueillante. Enfin, des problèmes subsistent pour accéder aux zones de reproduction et moins de la moitié des saumons qui pénètrent sur l'axe Dordogne parviennent sur l'amont du bassin.

Les échantillonnages par pêche électrique ont mis en avant pour 2017 de bons résultats de l'indicateur d'abondance, reflet d'un faible niveau de perturbation hydrologique du 15 mars au 15 juin 2017. Quelques éclusées de faible amplitude ont été relevées jusqu'à la mi-avril, avec des fréquences de baisses de débit qui figurent parmi les plus faibles sur la Dordogne depuis 15 ans sur cette période. Les baisses de débit se sont faites avec des gradients de baisse proches des variations naturelles.

Globalement, les mesures mises en place dans le cadre de la convention de gestion des débits ne sont pas aussi satisfaisantes pour la Maronne que pour la Dordogne. Pourtant, comme en témoignent les résultats 2011, 2013 et maintenant 2017, le potentiel de cette rivière en termes de grossissement et de production de juvéniles est très élevé, en dépit d'un milieu profondément modifié et artificialisé. Il est impératif de mettre tout en œuvre pour que l'axe Maronne fonctionne à son plein potentiel aussi souvent que possible et notamment les années où il n'y a pas de crue printanière. Il est manifeste que les habitats amont où l'enjeu est le plus fort (Dordogne et Maronne) sont globalement très productifs ; et ceci particulièrement lorsque aucune éclusée n'est réalisée durant la période de vulnérabilité des salmonidés. Il y a également beaucoup à gagner en préservant les affluents comme la Souvigne.

La qualité des habitats dulçaquicoles pour le saumon est d'une importance capitale pour la réussite du plan de restauration sur la Dordogne. Les habitats doivent être colonisables et de qualité, afin de permettre l'accomplissement naturel du cycle biologique du saumon atlantique. C'est pourquoi, la reconquête d'habitats à haute valeur biologique, en réduisant autant que nécessaire l'impact de l'hydroélectricité sur le milieu ou en restaurant des zones de reproduction et de croissance des juvéniles, est un challenge d'envergure, qui se doit d'être mené à bien pour l'avenir de la population de saumon atlantique et de la rivière Dordogne. Le travail doit se poursuivre à l'aval au niveau des barrages pour assurer une dévalaison rapide et sans mortalité de ces poissons.

BIBLIOGRAPHIE

CHANSEAU M., GAUDARD G., 2003. Repeuplement en saumon atlantique du bassin de la Dordogne. Suivi biologique des zones de grossissement des juvéniles. Synthèse des actions 2002. Rapport MIGADO D16-03-RT.

CHANSEAU M., GAUDARD G., 2004. Repeuplement en saumon atlantique du bassin de la Dordogne. Suivi des zones de grossissement des juvéniles. Synthèse des actions 2003. Rapport MIGADO 7D-04-RT.

CHANSEAU M., BRAZIER W., GAUDARD G., 2006. Repeuplement en saumon atlantique du bassin de la Dordogne. Suivi des zones de grossissement des juvéniles. Synthèse des actions 2005. Rapport MIGADO 10D-06-RT.

CHANSEAU M., GRACIA S., 2008. Suivi par pêches électriques des populations de juvéniles de saumon atlantique sur le bassin de la Dordogne, année 2007. Rapport MIGADO.

CHANSEAU M., BOSC S., GALIAY E., OULES G., 2002. L'utilisation de l'huile de clou de girofle comme anesthésique pour les smolts de saumon atlantique (*Salmo salar* L.) et comparaison de ses effets avec ceux du 2-phénoxyéthanol. Bull. Fr. Pêche Piscic., 365/366, p. 579-589.

CHOLLET A., 2001. Conception et élaboration d'outils d'organisation des plans d'alevinage en saumon atlantique sur le bassin de la Dordogne. Mémoire de stade de 2ème année du Diplôme Universitaire Supérieur Ingénierie des Milieux Aquatiques et des Corridors fluviaux. Université de Tours, 57 p. + annexes.

COURRET D., LARINIER P., LASCAUX J.M., CHANSEAU M., LARINIER M., 2006. Etude pour une limitation des effets des éclusées sur la Dordogne en aval du Sablier pour le saumon atlantique. Secteur Argentat – Saulières. Rapport MIGADO 8D-06-RT, GHAAPPE RA.06.02, 38 p. + annexes.

COURRET D., LARINIER P., LASCAUX J.M., CHANSEAU M., LARINIER M., à paraître. Etude pour une limitation des effets des éclusées sur la Dordogne en aval du Sablier pour le saumon atlantique. Secteur Saulières - Rodanges.

CUSHMAN R.M., 1985. Review of ecological effects of rapidly varying flows downstream from hydroelectric facilities. North American Journal of Fisheries Management 5: 330-339.

DEGIORGI F., RAYMOND J.C, 2000. Guide Technique. Utilisation de l'ichtyofaune pour la détermination de la qualité globale des écosystèmes d'eau courante. Conseil Supérieur de la Pêche (Délégation Régionale de Lyon) / Agence de l'eau Méditerranée-Corse. 196 p. + annexes.

HELAND M., BEALL E., DUMAS J., 1996a. Programme de réintroduction des espèces migratrices. Etude de la qualité des jeunes saumons de repeuplement. 2ème phase. Comparaison entre alevins produits en conditions naturelles et en conditions de pisciculture. Rapport final. Convention Etat-Région Aquitaine-INRA Station d'Hydrobiologie. Code INRA 1464 A. 35 p.

HELAND M., BEALL E., DUMAS J., 1996b. Programme de réintroduction des espèces migratrices. Etude de la qualité des jeunes saumons de repeuplement. 3ème phase. Mise au point de méthodes de reconditionnement de jeunes saumons d'élevage avant déversement en milieu naturel. Rapport final. Convention Etat-Région Aquitaine-INRA Station d'Hydrobiologie. Code INRA B00019. 54 p.

HEARN W.E., 1987 Interspecific competition and habitat segregation among stream-divelling trout and salmon. Fisheries, 12, 24-31.

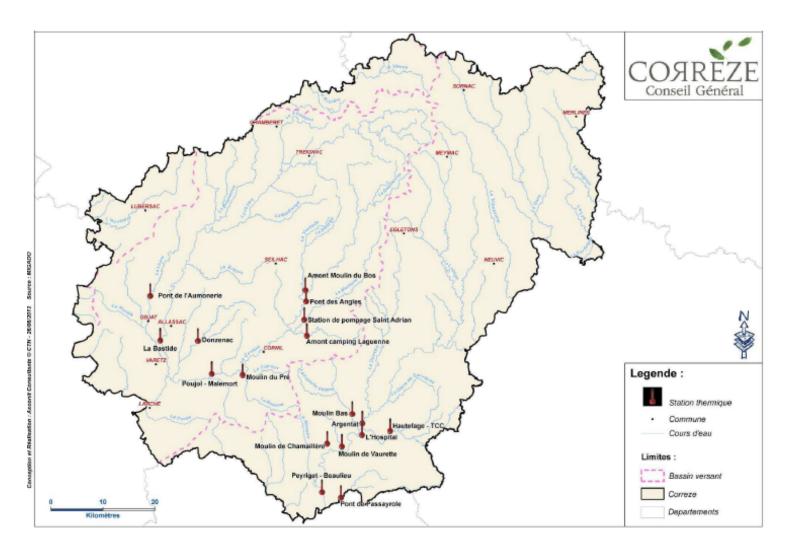
LASCAUX JM., CAZENEUVE L., 2010. Impact du fonctionnement par éclusées du barrage du Sablier sur la Dordogne et de Hautefage sur la Maronne : suivi des échouages piégeage de poissons en 2009. Rapport ECOGEA pour MIGADO 14D-10RT. 32p+annexes.

LAGARRIGUE T., LASCAUX J.M., CHANSEAU M., 2002. Effets d'un débit minimum de 3 m³/s délivré à l'aval de l'usine de Hautefage sur l'exondation des frayères de grands salmonidés sur la Maronne. Rapport MIGADO/ECOGEA D14-02-RT, 9 p. + annexes.

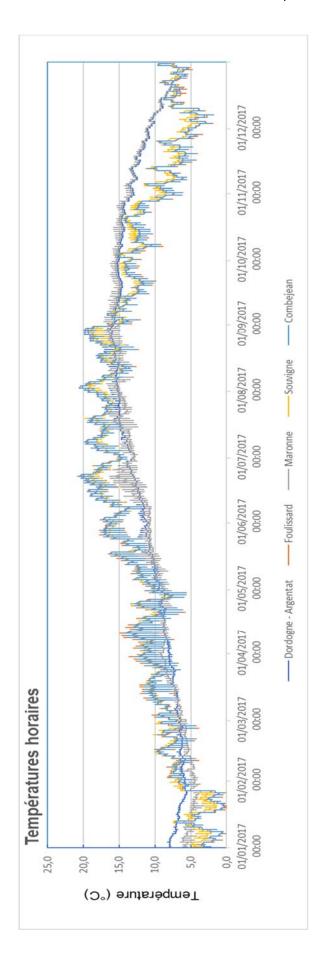
LASCAUX J.M., LAGARRIGUE T., CHANSEAU M., 2003. Effets d'un débit minimum de 3 m³/s délivré à l'aval de l'usine de Hautefage sur l'exondation des frayères de grands salmonidés sur la Maronne. Rapport MIGADO/ECOGEA.

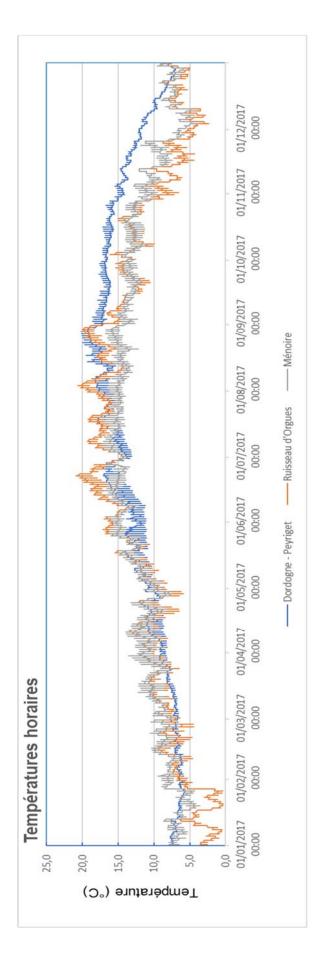
LASCAUX J.M., CAZENEUVE L., 2000 à 2014 Suivi de la reproduction des grands salmonidés migrateurs sur le bassin de la Dordogne en aval du Sablier. Département de la Corrèze et du Lot. Automne.

LASCAUX JM., CAZENEUVE L., LAGARRIGUE T. et CHANSEAU M., 2008. Cartographie des zones d'échouage-piégeage de la Maronne en aval de l'usine hydroélectrique de Hautefage et essai d'estimation des mortalités totales d'alevins de salmonidés sur le cours d'eau. 28p Rapport MIGADO 20D-08-RT.


PALLO S., LARINIER M. 2002. Définition d'une stratégie de réouverture de la Dordogne et de ses affluents à la dévalaison des salmonidés grands migrateurs, Simulation des mortalités induites par las aménagement hydroélectriques lors de la migration de dévalaison. Rapport MIGADO D2-02-RT/GHAAPPE. RA.02.01.

VANDEWALLE F., LAGARRIGUE T., LASCAUX J.M., 2004. Cartographie hydromorphologique de la Corrèze. Evaluation de ses potentialités de production en saumon atlantique (Salmo salar L.). Années 2003 et 2004. Rapport Ecogea pour MIGADO, 17D-04-RT, 45 p. + annexes.


VANDEWALLE F., MENNESSIER JM., CAZENEUVE L. et LASCAUX JM. 2009. Suivi de la reproduction naturelle des grands migrateurs sur le bassin de la Dordogne en aval du barrage du Sablier (département de la Corrèze et de Lot) – Automne Hiver 2008/2009. Bilan de l'efficacité du relèvement du débit plancher de la Dordogne (30 m³/s soit 30% du module du cours d'eau) sur la préservation des frayères de grands salmonidés de l'exondation. 26p. + annexes cartographiques. (RAPPORT MIGADO 4D-09RT).


ANNEXES

Annexe 1 : Localisation des stations d'enregistrement de la température des cours d'eau classés axe bleu.

Annexe 2 : Courbes températures.

Annexe 3 : Résultats bruts de pêche électrique De Lury

	7,000	139	539	869	1075	1294	683	524	168	340	273	569	307	524	393	149	22	139
Total	Biomas	8	2618	4066	4433	10348	7290	3054	1050	2307	1494	1590	1105	4114	3409	524	311	629
	3:10033.	ineci.	201	321	726	06	164	99		6	70	128	157	32	9	10		4
VAI	Biomas	se	180	570	1315	117	234	86		16	06	226	270	58	96	20		2
_	3170035		16	4	118	691	193	348	154	207	2	3	23	251	101	66	52	29
TRF	Biomas	se	215	45	2004	5476	3423	2229	938	1478	170	36	188	2033	1176	297	278	364
Ľ	3170033		182	89	18	364	214	77	1	43	127	25	2	152	117	23		11
SAT	Biomas	se	932	1014	178	3855	2919	202	3	515	624	245	16	1513	1513	92		63
PFL	3:100332		32	1	56				7	1	24	3	35			1		1
Ы	Biomas	se	458		231				64		387		297			2		
100	3:10 033.	Ellectii		4								3						
0	Biomas	se																
OBR	2,700,33.				1													
0	Biomas	se			8													
	Surface	(m2)	1264,3	379	1084,3	673	6'916	9'085	281,8	401,1								
e pêche	Durée	(min)	53	24	36	44	31	72	13	15	97	17	15	37	23	17	10	11
Effort de pêche	0.0000	rdssage	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2
		Anode	2	2	2	3	3	2	2	2	2	2	2	3	3	2	2	7
	10,000	riospection	De Lury	De Lury	De Lury	De Lury	De Lury	De Lury	De Lury	De Lury	De Lury	De Lury	De Lury	De Lury	De Lury	De Lury	De Lury	De Lury
entaire		rype	A pied	A pied	A pied	A pied	A pied	A pied	A pied	A pied	A pied	A pied	A pied	A pied	A pied	A pied	A pied	A pied
Pêche d'inventaire	leinýteva	Materiel	Héron	Héron	Héron	Héron	Héron	Héron	Héron	Héron	Héron	Héron	Héron	Héron	Héron	Héron	Héron	Héron
	op op u	Mode	électricité	électricité	électricité	électricité	électricité	électricité	électricité	électricité	électricité	électricité	électricité	électricité	électricité	électricité	électricité	électricité
	>	-	2033506	2023135	2010472	2077999	2077984	2088438	2007836	2008962								
Localisation	>	۷	557824	547471	256790	567842	268609	568934	571535	269988								
Loca	a cit et 2	Station	PONT DES ANGLES	PONT DE BONNEL	PONT DE CHADIOT	Orpailleur	Pont de l'hospital	llôts de l'hospital	Pont Broquerie	Prach	PONT DES ANGLES	PONT DE BONNEL	PONT DE CHADIOT	Orpailleur	Pont de l'hospital	llôts de l'hospital	Pont Broquerie	Prach
	2,43,40	RIVIELE	CORREZE	CORREZE	SOUVIGNE	Maronne	Maronne	Maronne	Maronne	Maronne	CORREZE	CORREZE	SOUVIGNE	Maronne	Maronne	Maronne	Maronne	Maronne
	÷	Date	30/08/2017	31/08/2017 CORREZE	30/08/2017	29/08/2017	29/08/2017	28/08/2017	28/08/2017	28/08/2017 Maronne	30/08/2017 CORREZE	31/08/2017 CORREZE	30/08/2017 SOUVIGNE	29/08/2017 Maronne	29/08/2017	28/08/2017	28/08/2017	28/08/2017

Annexe 4 : Résultats bruts de pêche électrique CPUE

					אוצ	ANG	AH2	¥E5	Ħ	Ę	വാ	GOU	101	5
	Station	×	>	Prospection	Biomasse	Effectif	Biomasse	Effectif	Biomasse	Effectif	Biomasse	Effectif	Biomasse	Effectif
21/08/2017 Dordogne	Astaillac	560916,36	1993807,06	CPUE			9	6			44	5	72	20
	Camping Beaulieu	260678	1998274	CPUE			64	37			98	5	16	21
21/08/2017 Dordogne	Camping EUROPE	568246	2008525	CPUE			35	7					120	23
22/08/2017 Dordogne	CHABANAL	566456	2007073	CPUE	45	1	65	22					127	25
22/08/2017 Dordogne	CLORIEUX	566903	2006760	CPUE		1	31	8			9	1	436	99
22/08/2017 Dordogne	Confluence maronne	567804	2008111	CPUE			38	7					19	2
21/08/2017 Dordogne	MALPAS	268063	2009190	CPUE			25	14				9	14	-
22/08/2017 Dordogne	MONCEAU	566385	2008389	CPUE			82	14			72	2	144	38
-	Soleil d'OC	567114	2008600	CPUE			26	12			14	2	217	52
-	Port de VAURS	565271	2005140	CPUE	28	-	82	11			52	2	141	34
23/08/2017 Dordogne	RECOUDIER	563598	2005200	CPUE			72	13			59	9	242	73
23/08/2017 Dordogne	Saulières	566036	2005210	CPUE			44	16			22	1	210	42
23/08/2017 Dordogne	VAURETTE	564819	2005240	CPUE			38	8			41	2	273	71
-		260890	2002090	CPUE							55	7	23	5
-		562991	2005266	CPUE	49	1	23	4						37
_		561184	2004323	CPUE			19,5	6			33	2	62	19
24/08/2017 Dordogne	Peyriget	561755	2000715	CPUE			31	53					132	34
24/08/2017 Dordogne	Valleyran	561765	2000722	CPUE			27	11			10	2	64	16
24/08/2017 Dordogne	IV	561464	2003413	CPUE			3	2	3	1	184	15	190	45
23/08/2017 Dordogne	Pont d'ARGENTAT	568804	2010178	CPUE			111	18					6	2
	Localisation				OBR	OBR	SAT	SAT	TRF	TRF	VAI	VAI	Total	:
Date Rivière	Station	×	>	Prospection	Biomasse	Effectif	Biomasse	Effectif	Biomasse	Effectif	Biomasse	Effectif	biomasse	Total effectif
21/08/2017 Dordogne	Astaillac	560916,36	1993807,06	CPUE			348	26	16	-	17	8	503	99
21/08/2017 Dordogne	Camping Beaulieu	560678	1998274	CPUE			438	25	21	2	65	26	774	116
21/08/2017 Dordogne	Camping EUROPE	568246	2008525	CPUE			45	5	513	42	39	20	752	97
22/08/2017 Dordogne	CHABANAL	566456	2007073	CPUE			35	2	252	33	81	43	605	126
_	CLORIEUX	566903	2006760	CPUE			14	1	312	46	47	17	846	143
-	Confl	567804	2008111	CPUE			43	3	313	53	22	11	435	55
_		568063	2009190	CPUE	8	1			813	30	37	31	926	83
	MONCEAU	566385	2008389	CPUE	7	-	54	5	200	28	126	99	985	187
22/08/2017 Dordogne	Soleil d'OC	567114	2008600	CPUE	5	-	58	9	373	20	193	82	886	205
23/08/2017 Dordogne	Port de VAURS	565271	2005140	CPUE			384	27	421	43	37	19	1145	137
\dashv	RECOUDIER	563598	2005200	CPUE			641	84	26	10	41	19	1152	205
23/08/2017 Dordogne		566036	2005210	CPUE			171	10	288	22	42	17	777	108
23/08/2017 Dordogne	VAURETTE	564819	2005240	CPUE			1482	153	48	9	14	7	1896	247
24/08/2017 Dordogne	CHAMBON	260890	2002090	CPUE			373	30	209	8	77	37	137	87
24/08/2017 Dordogne	Feneyrol	562991	2005266	CPUE			807	83	148	23	1	3	1028	151
24/08/2017 Dordogne	Moulinot	561184	2004323	CPUE			710	78	62	8	34	23	920,5	139
24/08/2017 Dordogne	Peyriget	561755	2000715	CPUE			1804	180	284	22	15	7	2266	296
		561765	2000722	CPUE			980	92	22	3	41	18	1144	145
		561464	2003413	CPUE	8	1	1116	94	148	2	20	9	7291	169
												,		200

MIGADO – Restau	ration du saumon atlantique dan	s la Dordogne : suivis biolog	giques, année 2017.
Les données fic	gurant dans ce docume	ent ne pourront être	exploitées
de quelque ma	nière que ce soit, sans	l'autorisation écrit	e préalable
	//I.GA.DO. et de ses par		
ue n	ii.GA.DO. et de ses pai	terialies illialitiers.	

Opération financée par :

